Menu Close

sppose-that-R-be-aring-and-we-have-the-ring-R-Z-prove-that-R-0-it-was-ideal-in-R-Z-and-prove-0-Z-be-isomorphic-in-Z-and-if-a-R-identity-element-a-




Question Number 78342 by mhmd last updated on 16/Jan/20
sppose that (R,+,.)be aring and we have the ring (R×Z,+^(′ ) ,.^′ ) prove that (R×0,+^′ ,.′) it was ideal in (R×Z,+^′ ,.^′ )  and prove (0×Z,+,.)be isomorphic in (Z,+,.)  and if a∈R identity element (a^2 =a)prove that (−a,1)be identity element in the ring (R×Z,+^′ ,.^′ )  pleas sir help me am neding this pleas?
$${sppose}\:{that}\:\left({R},+,.\right){be}\:{aring}\:{and}\:{we}\:{have}\:{the}\:{ring}\:\left({R}×{Z},+^{'\:} ,.^{'} \right)\:{prove}\:{that}\:\left({R}×\mathrm{0},+^{'} ,.'\right)\:{it}\:{was}\:{ideal}\:{in}\:\left({R}×{Z},+^{'} ,.^{'} \right) \\ $$$${and}\:{prove}\:\left(\mathrm{0}×{Z},+,.\right){be}\:{isomorphic}\:{in}\:\left({Z},+,.\right) \\ $$$${and}\:{if}\:{a}\in{R}\:{identity}\:{element}\:\left({a}^{\mathrm{2}} ={a}\right){prove}\:{that}\:\left(−{a},\mathrm{1}\right){be}\:{identity}\:{element}\:{in}\:{the}\:{ring}\:\left({R}×{Z},+^{'} ,.^{'} \right) \\ $$$${pleas}\:{sir}\:{help}\:{me}\:{am}\:{neding}\:{this}\:{pleas}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *