Menu Close

study-the-convergence-of-0-1-x-n-2-x-n-dx-n-N-




Question Number 66350 by mathmax by abdo last updated on 12/Aug/19
study the convergence of  ∫_0 ^∞  (1−(√(x^n /(2+x^n ))))dx    n∈N
$${study}\:{the}\:{convergence}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\left(\mathrm{1}−\sqrt{\frac{{x}^{{n}} }{\mathrm{2}+{x}^{{n}} }}\right){dx}\:\:\:\:{n}\in{N} \\ $$
Commented by mathmax by abdo last updated on 14/Aug/19
let I =∫_0 ^∞ (1−(√(x^n /(2+x^n ))))dx and f(x)=1−(√(x^n /(2+x^n )))  we have (√(x^n /(2+x^n )))=(((2+x^n −2)/(2+x^n )))^(1/2)  =(1−(2/(2+x^n )))^(1/2)   ∼1−(1/(2+x^n ))  but  ∫_0 ^∞ (1−(1/(2+x^n )))dx diverges  I diverges.
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \left(\mathrm{1}−\sqrt{\frac{{x}^{{n}} }{\mathrm{2}+{x}^{{n}} }}\right){dx}\:{and}\:{f}\left({x}\right)=\mathrm{1}−\sqrt{\frac{{x}^{{n}} }{\mathrm{2}+{x}^{{n}} }} \\ $$$${we}\:{have}\:\sqrt{\frac{{x}^{{n}} }{\mathrm{2}+{x}^{{n}} }}=\left(\frac{\mathrm{2}+{x}^{{n}} −\mathrm{2}}{\mathrm{2}+{x}^{{n}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:=\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{2}+{x}^{{n}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\sim\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}+{x}^{{n}} }\:\:{but}\:\:\int_{\mathrm{0}} ^{\infty} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}+{x}^{{n}} }\right){dx}\:{diverges}\:\:{I}\:{diverges}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *