Question Number 66349 by mathmax by abdo last updated on 12/Aug/19
$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{arctan}\left({x}−\mathrm{1}\right)}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }{dx} \\ $$
Commented by mathmax by abdo last updated on 14/Aug/19
$${changement}\:{x}−\mathrm{1}={t}\:{give} \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\frac{{arctan}\left({x}−\mathrm{1}\right)}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }\:{dx}\:=\int_{\mathrm{0}} ^{+\infty} \:\frac{{arctan}\left({t}\right)}{\left(\left({t}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left({t}\right)}{\left({t}^{\mathrm{2}} \:+\mathrm{2}{t}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }{dt}\:\:\:\:{for}\:{t}\in{V}\left(\mathrm{0}\right)\:\:\:\frac{{arctan}\left({t}\right)}{\left({t}^{\mathrm{2}} \:+\mathrm{2}{t}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }\sim\frac{{t}}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}} \left({t}+\mathrm{2}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }\:\sim\frac{\mathrm{1}}{{t}^{\frac{\mathrm{1}}{\mathrm{3}}} .\mathrm{2}^{\frac{\mathrm{4}}{\mathrm{3}}} } \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{\mathrm{2}^{\frac{\mathrm{4}}{\mathrm{3}}} \:{t}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\:{converges}\:{because}\:\mathrm{0}<\frac{\mathrm{1}}{\mathrm{3}}<\mathrm{1} \\ $$$${at}\:{V}\left(+\infty\right)\:\:{lim}_{{t}\rightarrow+\infty} \:\:\:\:{t}^{\mathrm{2}} \:\frac{{arctan}\left({t}\right)}{\left({t}^{\mathrm{2}} \:+\mathrm{2}{t}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }\:={lim}_{{t}\rightarrow+\infty} \:\:\:\frac{\pi}{\mathrm{2}}\:\frac{{t}^{\mathrm{2}} }{{t}^{\frac{\mathrm{8}}{\mathrm{3}}} \left(\mathrm{1}+\frac{\mathrm{2}}{{t}}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} } \\ $$$$={lim}_{{t}\rightarrow+\infty} \:\:\:\frac{\pi}{\mathrm{2}{t}^{\frac{\mathrm{2}}{\mathrm{3}}} }\:=\mathrm{0}\:\:\:{so}\:{the}\:{integral}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{arctan}\left({t}\right)}{\left({t}^{\mathrm{2}} \:+\mathrm{2}{t}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }{dt}\:{converges} \\ $$$${finally}\:{this}\:{integral}\:{is}\:{convergent}. \\ $$