Menu Close

Sum-the-series-n-0-P-r-n-x-n-n-where-P-r-n-is-a-polynomial-of-degree-r-in-n-




Question Number 23 by user1 last updated on 25/Jan/15
Sum the series Σ_(n=0) ^∞ P_r (n)(x^n /(n!)) , where P_r (n)   is a polynomial of degree r in n.
Sumtheseriesn=0Pr(n)xnn!,wherePr(n)isapolynomialofdegreerinn.
Answered by user1 last updated on 31/Oct/14
P_r (n)=a_0 +a_1 n+a_2 n(n−1)+....+a_r n(n−1)...(n−r+1),       Σ_(n=0) ^∞ P_r (n)(x^n /(n!))=a_0 Σ_(n=0) ^∞  (x^n /(n!))+a_1 Σ_(n=1) ^∞  (x^n /((n−1)!))                   +a_2 Σ_(n=2) ^∞  (x^n /((n−2)!))+....a_r Σ_(n=r) ^∞  (x^n /((n−r)!))  =a_0 Σ_(n=0) ^∞  (x^n /(n!))+a_1 xΣ_(n=1) ^∞  (x^(n−1) /((n−1)!))+a_2 xΣ_(n=2) ^∞  (x^(n−2) /((n−2)!))+...                          ...+a_r x^r Σ_(n=r) ^∞  (x^(n−r) /((n−r)!))  (a_0 +a_1 x+a_2 x^2 +...+a_r x^r )e^x
Pr(n)=a0+a1n+a2n(n1)+.+arn(n1)(nr+1),n=0Pr(n)xnn!=a0n=0xnn!+a1n=1xn(n1)!+a2n=2xn(n2)!+.arn=rxn(nr)!=a0n=0xnn!+a1xn=1xn1(n1)!+a2xn=2xn2(n2)!++arxrn=rxnr(nr)!(a0+a1x+a2x2++arxr)ex