Menu Close

Sum-to-n-terms-1-1-1-1-2-1-1-2-3-




Question Number 2273 by RasheedAhmad last updated on 12/Nov/15
Sum to n terms.  (1/1)+(1/(1+2))+(1/(1+2+3))...
Sumtonterms.11+11+2+11+2+3
Answered by Yozzi last updated on 12/Nov/15
For an A.P with first term a and  common difference d, its sum to n  terms is given by  S(n)=(n/2)(2a+(n−1)d).  For A.Ps  in demominator, the  first term is a=1 and common   difference is d=1. Thus, the sum to r  terms of each A.P in the denominators,  is given by  S(r)=(r/2)(2×1+(r−1)×1)           =(r/2)(2+r−1)  S(r)=(r/2)(r+1).    The general term U_r  for the given  series is   U_r =(1/(S(r)))=(2/(r(r+1))).  Observe that  (1/r)−(1/(r+1))=((r+1−r)/(r(r+1)))=(1/(r(r+1))).   ∴U_r =2((1/r)−(1/(r+1)))  Now let f(r)=1/r   (r∈N)  ⇒U_r =2(f(r)−f(r+1))  ∴ Σ_(r=1) ^n U_r =2[f(1)−f(2)]+2[f(2)−f(3)]  +2[f(3)−f(4)]+2[f(4)−f(5)]+2[f(5)  −f(6)]+...+2[f(n−3)−f(n−2)]+  2[f(n−2)−f(n−1)]+2[f(n−1)−f(n)]  +2[f(n)−f(n+1)]  ⇒Σ_(r=1) ^n U_r =2[f(1)−f(n+1)]=2((1/1)−(1/(n+1)))  Σ_(r=1) ^n (2/(r(r+1)))=2(1−(1/(n+1)))   Corollary:  lim_(n→∞) Σ_(r=1) ^n (2/(r(r+1)))=lim_(n→∞) [2(1−(1/(n+1)))]                              =2−(2/∞)                              =2
ForanA.Pwithfirsttermaandcommondifferenced,itssumtontermsisgivenbyS(n)=n2(2a+(n1)d).ForA.Psindemominator,thefirsttermisa=1andcommondifferenceisd=1.Thus,thesumtortermsofeachA.Pinthedenominators,isgivenbyS(r)=r2(2×1+(r1)×1)=r2(2+r1)S(r)=r2(r+1).ThegeneraltermUrforthegivenseriesisUr=1S(r)=2r(r+1).Observethat1r1r+1=r+1rr(r+1)=1r(r+1).Ur=2(1r1r+1)Nowletf(r)=1/r(rN)Ur=2(f(r)f(r+1))nr=1Ur=2[f(1)f(2)]+2[f(2)f(3)]+2[f(3)f(4)]+2[f(4)f(5)]+2[f(5)f(6)]++2[f(n3)f(n2)]+2[f(n2)f(n1)]+2[f(n1)f(n)]+2[f(n)f(n+1)]nr=1Ur=2[f(1)f(n+1)]=2(111n+1)nr=12r(r+1)=2(11n+1)Corollary:limnnr=12r(r+1)=limn[2(11n+1)]=22=2
Commented by Rasheed Soomro last updated on 13/Nov/15
  NICE^(VERY)
NICEVERY
Answered by Rasheed Soomro last updated on 13/Nov/15
    AN  EASY  APPROACH    _(−) (Technically Simpler)    (1/1)+(1/(1+2))+(1/(1+2+3))+...+(1/(1+2+...+n))   ∵  1+2+...+n=(n/2)(n+1)  ∴   (1/((1/2)(1+1)))+(1/((2/2)(2+1)))+...+(1/((n/2)(n+1)))      1+(1/3)+(1/6)+...+(2/(n(n+1)))            Let               (A/n)+(B/(n+1))=(2/(n(n+1)))              A(n+1)+B(n)=2              For n=0, A=2               For n=−1, B=−2                (2/(n(n+1)))=(2/n)−(2/(n+1))  =1+(1/3)+(1/6)+...+((2/n)−(2/(n+1)))  =((2/1)−(2/(1+1)))+((2/2)−(2/(2+1)))+((2/3)−(2/(3+1)))...+((2/n)−(2/(n+1)))  =(2/1)−(2/2)+(2/2)−(2/3)+(2/3)−(2/4)+(2/4)−....+(2/(n−1))−(2/n)+(2/n)−(2/(n+1))  =2−(2/(n+1))=2(((n+1−1)/(n+1)))=((2n)/(n+1))
ANEASYAPPROACH(TechnicallySimpler)11+11+2+11+2+3++11+2++n1+2++n=n2(n+1)112(1+1)+122(2+1)++1n2(n+1)1+13+16++2n(n+1)LetAn+Bn+1=2n(n+1)A(n+1)+B(n)=2Forn=0,A=2Forn=1,B=22n(n+1)=2n2n+1=1+13+16++(2n2n+1)=(2121+1)+(2222+1)+(2323+1)+(2n2n+1)=2122+2223+2324+24.+2n12n+2n2n+1=22n+1=2(n+11n+1)=2nn+1

Leave a Reply

Your email address will not be published. Required fields are marked *