Sum-to-n-terms-1-1-1-1-2-1-1-2-3- Tinku Tara June 3, 2023 Algebra 0 Comments FacebookTweetPin Question Number 2273 by RasheedAhmad last updated on 12/Nov/15 Sumtonterms.11+11+2+11+2+3… Answered by Yozzi last updated on 12/Nov/15 ForanA.Pwithfirsttermaandcommondifferenced,itssumtontermsisgivenbyS(n)=n2(2a+(n−1)d).ForA.Psindemominator,thefirsttermisa=1andcommondifferenceisd=1.Thus,thesumtortermsofeachA.Pinthedenominators,isgivenbyS(r)=r2(2×1+(r−1)×1)=r2(2+r−1)S(r)=r2(r+1).ThegeneraltermUrforthegivenseriesisUr=1S(r)=2r(r+1).Observethat1r−1r+1=r+1−rr(r+1)=1r(r+1).∴Ur=2(1r−1r+1)Nowletf(r)=1/r(r∈N)⇒Ur=2(f(r)−f(r+1))∴∑nr=1Ur=2[f(1)−f(2)]+2[f(2)−f(3)]+2[f(3)−f(4)]+2[f(4)−f(5)]+2[f(5)−f(6)]+…+2[f(n−3)−f(n−2)]+2[f(n−2)−f(n−1)]+2[f(n−1)−f(n)]+2[f(n)−f(n+1)]⇒∑nr=1Ur=2[f(1)−f(n+1)]=2(11−1n+1)∑nr=12r(r+1)=2(1−1n+1)Corollary:limn→∞∑nr=12r(r+1)=limn→∞[2(1−1n+1)]=2−2∞=2 Commented by Rasheed Soomro last updated on 13/Nov/15 NICEVERY Answered by Rasheed Soomro last updated on 13/Nov/15 ANEASYAPPROACH−(TechnicallySimpler)11+11+2+11+2+3+…+11+2+…+n∵1+2+…+n=n2(n+1)∴112(1+1)+122(2+1)+…+1n2(n+1)1+13+16+…+2n(n+1)LetAn+Bn+1=2n(n+1)A(n+1)+B(n)=2Forn=0,A=2Forn=−1,B=−22n(n+1)=2n−2n+1=1+13+16+…+(2n−2n+1)=(21−21+1)+(22−22+1)+(23−23+1)…+(2n−2n+1)=21−22+22−23+23−24+24−….+2n−1−2n+2n−2n+1=2−2n+1=2(n+1−1n+1)=2nn+1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: f-1-x-1-f-x-1-x-2x-1-x-f-x-Stepwise-process-is-required-Next Next post: for-a-triangle-ABC-find-minimum-value-of-CosA-CosB-CosC- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.