Menu Close

Suppose-that-X-and-Y-have-a-discrete-joint-distribution-for-which-the-joint-p-f-is-defined-as-follows-f-x-y-c-x-y-for-x-2-1-0-1-2-and-y-2-1-0-1-2-0-other-wise-Determine-a




Question Number 75524 by mhmd last updated on 12/Dec/19
Suppose that X and Y have a discrete joint distribution for which the joint p.f  is defined as follows   f(x,y)={ c∣x+y∣ for x=−2,−1,0,1,2 and y=−2,−1,0,1,2  0                    other wise  Determine (a) the value of the constant of c  (b) pr(X=0 and Y=−2)  (e) pr(X=1)  (d) pr(∣x−y∣≤1)  pleas sir help me
$${Suppose}\:{that}\:{X}\:{and}\:{Y}\:{have}\:{a}\:{discrete}\:{joint}\:{distribution}\:{for}\:{which}\:{the}\:{joint}\:{p}.{f}\:\:{is}\:{defined}\:{as}\:{follows}\: \\ $$$${f}\left({x},{y}\right)=\left\{\:{c}\mid{x}+{y}\mid\:{for}\:{x}=−\mathrm{2},−\mathrm{1},\mathrm{0},\mathrm{1},\mathrm{2}\:{and}\:{y}=−\mathrm{2},−\mathrm{1},\mathrm{0},\mathrm{1},\mathrm{2}\right. \\ $$$$\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{other}\:{wise} \\ $$$${Determine}\:\left({a}\right)\:{the}\:{value}\:{of}\:{the}\:{constant}\:{of}\:{c} \\ $$$$\left({b}\right)\:{pr}\left({X}=\mathrm{0}\:{and}\:{Y}=−\mathrm{2}\right) \\ $$$$\left({e}\right)\:{pr}\left({X}=\mathrm{1}\right) \\ $$$$\left({d}\right)\:{pr}\left(\mid{x}−{y}\mid\leqslant\mathrm{1}\right) \\ $$$${pleas}\:{sir}\:{help}\:{me} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *