Menu Close

Suppose-that-y-n-satisfies-the-equations-1-x-2-d-2-y-n-dx-2-x-dy-n-dx-n-2-y-0-y-n-1-1-y-n-x-1-n-y-n-x-If-x-cos-obtain-y-n-as-afunction-of-




Question Number 2159 by Yozzis last updated on 05/Nov/15
Suppose that y_(n )  satisfies the equations   (1−x^2 )(d^2 y_n /dx^2 )−x(dy_n /dx)+n^2 y=0, y_n (1)=1  y_n (x)=(−1)^n y_n (−x).  If x=cosθ, obtain y_n  as afunction of θ.
$${Suppose}\:{that}\:{y}_{{n}\:} \:{satisfies}\:{the}\:{equations}\: \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\frac{{d}^{\mathrm{2}} {y}_{{n}} }{{dx}^{\mathrm{2}} }−{x}\frac{{dy}_{{n}} }{{dx}}+{n}^{\mathrm{2}} {y}=\mathrm{0},\:{y}_{{n}} \left(\mathrm{1}\right)=\mathrm{1} \\ $$$${y}_{{n}} \left({x}\right)=\left(−\mathrm{1}\right)^{{n}} {y}_{{n}} \left(−{x}\right). \\ $$$${If}\:{x}={cos}\theta,\:{obtain}\:{y}_{{n}} \:{as}\:{afunction}\:{of}\:\theta. \\ $$
Answered by sudhanshur last updated on 06/Nov/15
Chebyshev Equation in y_n   y_n (x)=c_1 cosh[nln (x+(√(x^2 −1)))]+ic_2 sinh[nln (x+(√(x^2 −1)))]  y_n (1)=1  c_1 cosh 0+ic_2 sinh 0=1  c_1 =1  y_n (−x)=(−1)^n y_n (x)  x=cos θ  ln (cos θ+isin θ)=ln e^(iθ) =iθ  y_n (θ)=c_1 cosh (niθ)+ic_2 sinh (niθ)  y_n =c_1 cos (nθ)−c_2 sin (nθ)  y_n =cos (nθ)−c_2 sin (nθ)
$$\mathrm{Chebyshev}\:\mathrm{Equation}\:\mathrm{in}\:{y}_{{n}} \\ $$$${y}_{{n}} \left({x}\right)={c}_{\mathrm{1}} \mathrm{cosh}\left[{n}\mathrm{ln}\:\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)\right]+{ic}_{\mathrm{2}} \mathrm{sinh}\left[{n}\mathrm{ln}\:\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)\right] \\ $$$${y}_{{n}} \left(\mathrm{1}\right)=\mathrm{1} \\ $$$${c}_{\mathrm{1}} \mathrm{cosh}\:\mathrm{0}+{ic}_{\mathrm{2}} \mathrm{sinh}\:\mathrm{0}=\mathrm{1} \\ $$$${c}_{\mathrm{1}} =\mathrm{1} \\ $$$${y}_{{n}} \left(−{x}\right)=\left(−\mathrm{1}\right)^{{n}} {y}_{{n}} \left({x}\right) \\ $$$${x}=\mathrm{cos}\:\theta \\ $$$$\mathrm{ln}\:\left(\mathrm{cos}\:\theta+{i}\mathrm{sin}\:\theta\right)=\mathrm{ln}\:{e}^{{i}\theta} ={i}\theta \\ $$$${y}_{{n}} \left(\theta\right)={c}_{\mathrm{1}} \mathrm{cosh}\:\left({ni}\theta\right)+{ic}_{\mathrm{2}} \mathrm{sinh}\:\left({ni}\theta\right) \\ $$$${y}_{{n}} ={c}_{\mathrm{1}} \mathrm{cos}\:\left({n}\theta\right)−{c}_{\mathrm{2}} \mathrm{sin}\:\left({n}\theta\right) \\ $$$${y}_{{n}} =\mathrm{cos}\:\left({n}\theta\right)−{c}_{\mathrm{2}} \mathrm{sin}\:\left({n}\theta\right) \\ $$
Commented by Yozzi last updated on 06/Nov/15
Sorry. I meant that one use the   substitution x=cosθ to solve the  d.e in θ given the conditions are satisfied.  I hadn′t known, however, that this  is a special kind of d.e whose   general solution could be quoted.   I′m glad you′ve shared this knowledge.
$${Sorry}.\:{I}\:{meant}\:{that}\:{one}\:{use}\:{the}\: \\ $$$${substitution}\:{x}={cos}\theta\:{to}\:{solve}\:{the} \\ $$$${d}.{e}\:{in}\:\theta\:{given}\:{the}\:{conditions}\:{are}\:{satisfied}. \\ $$$${I}\:{hadn}'{t}\:{known},\:{however},\:{that}\:{this} \\ $$$${is}\:{a}\:{special}\:{kind}\:{of}\:{d}.{e}\:{whose}\: \\ $$$${general}\:{solution}\:{could}\:{be}\:{quoted}.\: \\ $$$${I}'{m}\:{glad}\:{you}'{ve}\:{shared}\:{this}\:{knowledge}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *