suppose-the-equations-x-2-px-4-0-and-x-2-qx-3-0-have-a-common-root-write-this-root-in-terms-of-the-other-root- Tinku Tara June 3, 2023 Algebra 0 Comments FacebookTweetPin Question Number 77119 by necxxx last updated on 03/Jan/20 supposetheequationsx2+px+4=0andx2+qx+3=0haveacommonroot,writethisrootintermsoftheotherroot. Answered by jagoll last updated on 03/Jan/20 supposeiscommonrootisx1x12+px1+4=0(1)x12+qx1+3=0(2)by(1)−(2)weget(p−q)x1=−1⇒x1=1q−pnowweappliesVieta′sruleconsiderx2+px+4=0hasrootx1andx2⇒x1×x2=4x2=4(q−p)considerx2+qx+3=0hasrootx1andx3x3=3(q−p). Answered by MJS last updated on 04/Jan/20 letrthecommonroot(1)⇒(x−r)(x−4r)=0⇒p=−(r+4r)(2)⇒(x−r)(x−3r)=0⇒q=−(r+3r)commonrootintermsoftheotherroot(1)letstheotherroot⇒s=4r⇔r=4s(2)letttheotherroot⇒t=3r⇔r=3t(⇒4s=3t⇔s=43t⇔t=34s) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: evaluate-n-1-n-cos-npi-2n-2-Next Next post: pi-pi-xsin-x-1-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.