Menu Close

Suppose-z-50-z-25-m-0-where-z-1-i-2-find-the-value-of-m-




Question Number 143194 by ZiYangLee last updated on 11/Jun/21
Suppose z^(50) +z^(25) +m=0, where z=((1+i)/( (√2)))  find the value of m.
$$\mathrm{Suppose}\:{z}^{\mathrm{50}} +{z}^{\mathrm{25}} +{m}=\mathrm{0},\:\mathrm{where}\:{z}=\frac{\mathrm{1}+{i}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{m}. \\ $$
Answered by Olaf_Thorendsen last updated on 11/Jun/21
z = ((1+i)/( (√2))) = e^(i(π/4))   z^(50)  = e^(i(π/4)×50)  = e^(i((25π)/2))  = e^(i(π/2))  = i  z^(25)  = e^(i(π/4)×25)  = e^(i((25π)/4))  = e^(i(π/4))  = ((1+i)/( (√2))) = z  m = −z^(25) −z^(50)  = −(z+i) = −((1+(1+(√2))i)/( (√2)))
$${z}\:=\:\frac{\mathrm{1}+{i}}{\:\sqrt{\mathrm{2}}}\:=\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \\ $$$${z}^{\mathrm{50}} \:=\:{e}^{{i}\frac{\pi}{\mathrm{4}}×\mathrm{50}} \:=\:{e}^{{i}\frac{\mathrm{25}\pi}{\mathrm{2}}} \:=\:{e}^{{i}\frac{\pi}{\mathrm{2}}} \:=\:{i} \\ $$$${z}^{\mathrm{25}} \:=\:{e}^{{i}\frac{\pi}{\mathrm{4}}×\mathrm{25}} \:=\:{e}^{{i}\frac{\mathrm{25}\pi}{\mathrm{4}}} \:=\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:=\:\frac{\mathrm{1}+{i}}{\:\sqrt{\mathrm{2}}}\:=\:{z} \\ $$$${m}\:=\:−{z}^{\mathrm{25}} −{z}^{\mathrm{50}} \:=\:−\left({z}+{i}\right)\:=\:−\frac{\mathrm{1}+\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){i}}{\:\sqrt{\mathrm{2}}} \\ $$
Commented by ZiYangLee last updated on 11/Jun/21
thanks sir
$$\mathrm{thanks}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *