Menu Close

t-x-c-2-t-2-x-4-c-2-4-find-x-or-t-Given-0-lt-c-lt-2-3-3-




Question Number 141076 by ajfour last updated on 15/May/21
t+x=(c/2)   t^2 +x^4 =(c^2 /4)  find x or t . Given 0<c<(2/(3(√3)))
t+x=c2t2+x4=c24findxort.Given0<c<233
Answered by Rasheed.Sindhi last updated on 15/May/21
t−(c/2)=−x  t^2 −(c^2 /4)=−x^4 ⇒(t−(c/2))(t+(c/2))=−x^4   ⇒(−x)(t+(c/2))+x^4 =0  ⇒x(−t−(c/2)+x^3 )=0  ⇒x=0 ∣  −t−(c/2)+x^3 =0       x=0⇒t+0=(c/2)⇒t=(c/2)       (x,t)=(0,(c/2))  −t−(c/2)+x^3 =0...........(i)     t−(c/2)+x=0.............(ii)  (i)+(ii)  x^3 +x−c=0(★)    (i)⇒ x^3 =t+(c/2)........(iii)  (ii)⇒x^3 =(−t+(c/2))^3 ....(iv)  t+(c/2)=(−t+(c/2))^3   t+(c/2)=−t^3 +(c^3 /8)+3(−t)((c/2))(−t+(c/2))  t+(c/2)=−t^3 +(c^3 /8)+(3/2)ct^2 −(3/2)ct  t^3 −(3/2)ct^2 +(3/2)ct−(c^3 /8)+(c/2)=0(★)  (★) Don′t know how to solve cubic  equation.       (x,t)=(0,(c/2))  ......
tc2=xt2c24=x4(tc2)(t+c2)=x4(x)(t+c2)+x4=0x(tc2+x3)=0x=0tc2+x3=0x=0t+0=c2t=c2(x,t)=(0,c2)tc2+x3=0..(i)tc2+x=0.(ii)(i)+(ii)x3+xc=0()(i)x3=t+c2..(iii)(ii)x3=(t+c2)3.(iv)t+c2=(t+c2)3t+c2=t3+c38+3(t)(c2)(t+c2)t+c2=t3+c38+32ct232ctt332ct2+32ctc38+c2=0()()Dontknowhowtosolvecubicequation.(x,t)=(0,c2)
Commented by mr W last updated on 15/May/21
x^3 +x−c=0 (★)  has always one real root:  x=(((√((1/(27))+(c^2 /4)))+(c/2)))^(1/3) −(((√((1/(27))+(c^2 /4)))−(c/4)))^(1/3)
x3+xc=0()hasalwaysonerealroot:x=127+c24+c23127+c24c43
Commented by Rasheed.Sindhi last updated on 15/May/21
Thαnks mr W  sir!
ThαnksmrWsir!

Leave a Reply

Your email address will not be published. Required fields are marked *