Menu Close

tan-1-x-2-2-x-2-1-x-2-2-dx-




Question Number 142103 by rs4089 last updated on 26/May/21
∫_(−∞) ^∞ ((tan^(−1) ((√(x^2 +2))))/((x^2 +1)(√(x^2 +2))))dx
tan1(x2+2)(x2+1)x2+2dx
Answered by mathmax by abdo last updated on 26/May/21
f(a)=∫_(−∞) ^(+∞)  ((arctan(a(√(x^2 +2))))/((x^2 +1)(√(x^2 +2))))dx ⇒  f^′ (a)=∫_(−∞) ^(+∞)  (dx/((x^2 +1)(1+a^2 (x^2 +2))))=2∫_0 ^∞  (dx/((x^2 +1)(a^2 x^2  +2a^2  +1)))  =_(ax=t)   2∫_0 ^∞  (dt/(a((t^2 /a^2 )+1)(t^2  +2a^2  +1))) =2a∫_0 ^∞  (dt/((t^2  +a^2 )(t^2 +2a^2  +1)))  =((2a)/(a^2 +1))∫_0 ^∞   ((1/(t^2  +a^2 ))−(1/(t^2  +2a^2 +1)))dt  =((2a)/(a^2  +1)){ ∫_0 ^∞  (dt/(t^2  +a^2 ))−∫_0 ^∞  (dt/(t^2  +2a^2 +1))} we have  ∫_0 ^∞   (dt/(t^2  +a^2 ))=_(t=ay)   ∫_0 ^∞  ((ady)/(a^2 (y^2 +1)))=(1/a)arctan((t/a))]_0 ^∞  =(π/(2a))  ∫_0 ^∞   (dt/(t^2  +2a^2  +1)) =_(t=(√(2a^2 +1))y)   ∫_0 ^∞  ((√(2a^2 +1))/((2a^2 +1)(y^2 +1)))dy  =(1/( (√(2a^2 +1)))) arctan((t/( (√(2a^2 +1)))))]_0 ^∞ =(π/(2(√(2a^2 +1))))  f^′ (a)=((2a)/(a^2  +1))(π/(2a))−((2a)/(a^2 +1))(π/(2(√(2a^2  +1))))=(π/(a^2  +1))−((aπ)/((a^2  +1)(√(2a^2 +1)))) ⇒  f(a)=π ∫_0 ^a  (dx/(x^2 +1))−π ∫_0 ^a    ((xdx)/((x^2 +1)(√(2x^2  +1)))) +C  f(0)=0=C ⇒f(a)=π∫_0 ^a  (dx/(x^2  +1))−π ∫_0 ^a  ((xdx)/((x^2  +1)(√(2x^2  +1))))  and ∫_(−∞) ^(+∞)  ((arctan((√(x^2 +2))))/((x^2 +1)(√(x^2 +2))))dx=f(1)=π∫_0 ^1  (dx/(x^2  +1))−π∫_0 ^1  ((xdx)/((x^2  +1)(√(2x^2  +1))))  we have ∫_0 ^1  (dx/(x^2  +1))=(π/4)  ∫_0 ^1  ((xdx)/((x^2 +1)(√(2x^2  +1)))) =_((√2)x=shy)   ∫_0 ^(argsh((√2)))  ((shy)/( (√2)(((sh^2 y)/2)+1)chy))((chy)/( (√2)))dy  =(1/2)∫_0 ^(log((√2)+(√3)))  ((shy)/((1/2)sh^2 y +1))dy =∫_0 ^(log((√2)+(√3)))  ((shy)/(sh^2 y +2))dy  =∫_0 ^(log((√2)+(√3)))  ((shy)/(((ch(2y)−1)/2)+2))dy=2∫_0 ^(log((√2)+(√3)))  ((shy)/(ch(2y)+3))dy  =2∫_0 ^(log((√2)+(√3)))     (((e^y −e^(−y) )/2)/(((e^(2y) −e^(−2y) )/2)+3))dy=2∫_0 ^(log((√2)+(√3)))  ((e^y −e^(−y) )/(e^(2y) −e^(−2y) +6))dy  =2 ∫_0 ^(log((√2)+(√3)))  ((e^(3y) −e^y )/(e^(4y) −1+6e^(2y) ))dy  =_(e^y  =u)    2∫_1 ^((√2)+(√3))    ((u^3 −u)/(u^4 +6u^2 −1))(du/u)  =2 ∫_1 ^((√2)+(√3))    ((u^2 −1)/(u^4 +6u^2 −1))du  u^4 +6u^2 −1=0 ⇒z^2 +6z−1=0  (z=u^2 )  Δ^′  =9+1=10 ⇒u_1 =−3+(√(10)) and u_2 =−3−(√(10))  u^4 +6u^2  −1 =(u^2 −u_1 )(u^2 −u_2 ) ⇒  Ψ(u)=((u^2 −1)/(u^4 +6u^2 −1))=(u^2 −1)((1/(u^2 −u_1 ))−(1/(u^2 −u_2 )))×(1/(u_1 −u_2 ))  =(1/(2(√(10))))(((u^2 −1)/(u^2 −u_1 ))−((u^2 −1)/(u^2 −u_2 ))) =(1/(2(√(10))))(((u^2 −u_1 +u_1 −1)/(u^2 −u_1 ))−((u^2 −u_2 +u_2 −1)/(u^2 −u_2 )))  =(1/(2(√(10))))(((u_1 −1)/(u^2 −u_1 ))−((u_2 −1)/(u^2 −u_2 ))) ⇒  ∫_0 ^1  ((xdx)/((x^2  +1)(√(2x^2 +1))))=((u_1 −1)/( (√(10))))∫_1 ^((√2)+(√3))   (du/(u^2 −u_1 ))−((u_2 −1)/( (√(10))))∫_1 ^((√2)+(√3)) (du/(u^2 −u_2 ))  now its eazy to find those integrals....
f(a)=+arctan(ax2+2)(x2+1)x2+2dxf(a)=+dx(x2+1)(1+a2(x2+2))=20dx(x2+1)(a2x2+2a2+1)=ax=t20dta(t2a2+1)(t2+2a2+1)=2a0dt(t2+a2)(t2+2a2+1)=2aa2+10(1t2+a21t2+2a2+1)dt=2aa2+1{0dtt2+a20dtt2+2a2+1}wehave0dtt2+a2=t=ay0adya2(y2+1)=1aarctan(ta)]0=π2a0dtt2+2a2+1=t=2a2+1y02a2+1(2a2+1)(y2+1)dy=12a2+1arctan(t2a2+1)]0=π22a2+1f(a)=2aa2+1π2a2aa2+1π22a2+1=πa2+1aπ(a2+1)2a2+1f(a)=π0adxx2+1π0axdx(x2+1)2x2+1+Cf(0)=0=Cf(a)=π0adxx2+1π0axdx(x2+1)2x2+1and+arctan(x2+2)(x2+1)x2+2dx=f(1)=π01dxx2+1π01xdx(x2+1)2x2+1wehave01dxx2+1=π401xdx(x2+1)2x2+1=2x=shy0argsh(2)shy2(sh2y2+1)chychy2dy=120log(2+3)shy12sh2y+1dy=0log(2+3)shysh2y+2dy=0log(2+3)shych(2y)12+2dy=20log(2+3)shych(2y)+3dy=20log(2+3)eyey2e2ye2y2+3dy=20log(2+3)eyeye2ye2y+6dy=20log(2+3)e3yeye4y1+6e2ydy=ey=u212+3u3uu4+6u21duu=212+3u21u4+6u21duu4+6u21=0z2+6z1=0(z=u2)Δ=9+1=10u1=3+10andu2=310u4+6u21=(u2u1)(u2u2)Ψ(u)=u21u4+6u21=(u21)(1u2u11u2u2)×1u1u2=1210(u21u2u1u21u2u2)=1210(u2u1+u11u2u1u2u2+u21u2u2)=1210(u11u2u1u21u2u2)01xdx(x2+1)2x2+1=u111012+3duu2u1u211012+3duu2u2nowitseazytofindthoseintegrals.
Answered by mindispower last updated on 26/May/21
∫_(−∞) ^∞ ((tan^− (t(√(x^2 +2))))/( (√(x^2 +2))(1+x^2 )))dx=f(t)  f′(t)=∫_(−∞) ^∞ (1/((1+x^2 )(1+2t^2 +t^2 x^2 )))  =2iπ.((1/(2i(1+t^2 )))+(1/(1−((1+2t^2 )/t^2 ))).(1/(2it(√(1+2t^2 )))))  =(π/(1+t^2 ))+((πt)/(−(1+t^2 )(√(1+2t^2 ))))=f′(t)  f(0)=0⇔∫_(−∞) ^∞ ((arctan((√(x^2 +2))))/((1+x^2 )(√(x^2 +2)))) dx=f(1)=∫_0 ^1 f′(t)dt  =∫_0 ^1 (π/(1+t^2 ))−(π/2)∫_0 ^1 (dx/((1+x)(√(1+2x))))dx  =(π^2 /4)−(π/2)∫_1 ^3 ((udu)/(((u^2 +1)/2)u))=(π^2 /4)−π∫_1 ^(√3) (du/((u^2 +1)))  =(π^2 /4)−π[_1 ^(√3) arctan(u)]  =(π^2 /4)−π.(π/(12))=(π^2 /6)  ∫_(−∞) ^∞ ((tan^(−1) ((√(2x+1))))/((1+x^2 )(√(2x+1))))dx=(π^2 /6)
tan(tx2+2)x2+2(1+x2)dx=f(t)f(t)=1(1+x2)(1+2t2+t2x2)=2iπ.(12i(1+t2)+111+2t2t2.12it1+2t2)=π1+t2+πt(1+t2)1+2t2=f(t)f(0)=0arctan(x2+2)(1+x2)x2+2dx=f(1)=01f(t)dt=01π1+t2π201dx(1+x)1+2xdx=π24π213uduu2+12u=π24π13du(u2+1)=π24π[13arctan(u)]=π24π.π12=π26tan1(2x+1)(1+x2)2x+1dx=π26

Leave a Reply

Your email address will not be published. Required fields are marked *