Menu Close

tan-76-4-sin-2-14-




Question Number 143680 by mathlove last updated on 17/Jun/21
tan 76=4  sin^2 14=?
$$\mathrm{tan}\:\mathrm{76}=\mathrm{4} \\ $$$$\mathrm{sin}\:^{\mathrm{2}} \mathrm{14}=? \\ $$
Commented by mr W last updated on 17/Jun/21
tan 14=(1/(tan 76))=(1/a)  sin 14=(1/( (√(1^2 +a^2 ))))=(1/( (√(1+a^2 ))))  sin^2  14=(1/( 1+a^2 ))  a≈4  sin^2  14≈(1/( 17))
$$\mathrm{tan}\:\mathrm{14}=\frac{\mathrm{1}}{\mathrm{tan}\:\mathrm{76}}=\frac{\mathrm{1}}{{a}} \\ $$$$\mathrm{sin}\:\mathrm{14}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}^{\mathrm{2}} +{a}^{\mathrm{2}} }}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}^{\mathrm{2}} }} \\ $$$$\mathrm{sin}^{\mathrm{2}} \:\mathrm{14}=\frac{\mathrm{1}}{\:\mathrm{1}+{a}^{\mathrm{2}} } \\ $$$${a}\approx\mathrm{4} \\ $$$$\mathrm{sin}^{\mathrm{2}} \:\mathrm{14}\approx\frac{\mathrm{1}}{\:\mathrm{17}} \\ $$
Answered by TheHoneyCat last updated on 17/Jun/21
tan=((sin)/(cos))  ⇔cos^2 tan^2 =sin^2   ⇔cos^2 tan^2 =1−cos^2   ⇔cos^2 (tan^2 +1)=1  ⇔cos^2 =(1/(tan^2 +1))  sin(x)=cos(x−90)=cos(90−x)  thus : sin^2 (x)=cos^2 (90−x)=(1/(tan^2 (90−x)+1))  evaluating for x=14  sin^2 14=(1/(tan^2 (76) +1))  sin^2 14=(1/5) _(according to your own result)   Howerver it is not a exact value,  tan76≈4,010780934...  But it is indeed  a good approximation.  and make a fun exercise ;•)
$${tan}=\frac{{sin}}{{cos}} \\ $$$$\Leftrightarrow{cos}^{\mathrm{2}} {tan}^{\mathrm{2}} ={sin}^{\mathrm{2}} \\ $$$$\Leftrightarrow{cos}^{\mathrm{2}} {tan}^{\mathrm{2}} =\mathrm{1}−{cos}^{\mathrm{2}} \\ $$$$\Leftrightarrow{cos}^{\mathrm{2}} \left({tan}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{1} \\ $$$$\Leftrightarrow{cos}^{\mathrm{2}} =\frac{\mathrm{1}}{{tan}^{\mathrm{2}} +\mathrm{1}} \\ $$$${sin}\left({x}\right)={cos}\left({x}−\mathrm{90}\right)={cos}\left(\mathrm{90}−{x}\right) \\ $$$$\mathrm{thus}\::\:{sin}^{\mathrm{2}} \left({x}\right)={cos}^{\mathrm{2}} \left(\mathrm{90}−{x}\right)=\frac{\mathrm{1}}{{tan}^{\mathrm{2}} \left(\mathrm{90}−{x}\right)+\mathrm{1}} \\ $$$$\mathrm{evaluating}\:\mathrm{for}\:{x}=\mathrm{14} \\ $$$${sin}^{\mathrm{2}} \mathrm{14}=\frac{\mathrm{1}}{{tan}^{\mathrm{2}} \left(\mathrm{76}\right)\:+\mathrm{1}} \\ $$$${sin}^{\mathrm{2}} \mathrm{14}=\frac{\mathrm{1}}{\mathrm{5}}\:_{\mathrm{according}\:\mathrm{to}\:\mathrm{your}\:\mathrm{own}\:\mathrm{result}} \\ $$$$\mathrm{Howerver}\:\mathrm{it}\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{exact}\:\mathrm{value}, \\ $$$${tan}\mathrm{76}\approx\mathrm{4},\mathrm{010780934}… \\ $$$$\mathrm{But}\:\mathrm{it}\:\mathrm{is}\:\mathrm{indeed}\:\:\mathrm{a}\:\mathrm{good}\:\mathrm{approximation}. \\ $$$$\left.\mathrm{and}\:\mathrm{make}\:\mathrm{a}\:\mathrm{fun}\:\mathrm{exercise}\:;\bullet\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *