Menu Close

tan-x-y-12-5-sin-x-y-3-5-x-y-x-y-are-acute-angles-tan-x-tan-y-




Question Number 141423 by naka3546 last updated on 18/May/21
tan (x+y)= ((12)/5)  sin (x−y) = (3/5)  x+y , x−y  are  acute  angles .  tan x tan y =  ?
$$\mathrm{tan}\:\left({x}+{y}\right)=\:\frac{\mathrm{12}}{\mathrm{5}} \\ $$$$\mathrm{sin}\:\left({x}−{y}\right)\:=\:\frac{\mathrm{3}}{\mathrm{5}} \\ $$$${x}+{y}\:,\:{x}−{y}\:\:{are}\:\:{acute}\:\:{angles}\:. \\ $$$$\mathrm{tan}\:{x}\:\mathrm{tan}\:{y}\:=\:\:? \\ $$
Answered by mr W last updated on 18/May/21
u=tan x, v=tan y  ((u+v)/(1−uv))=((12)/5) ⇒u+v=((12(1−uv))/5)  tan (x−y)=(3/4)  ((u−v)/(1+uv))=(3/4) ⇒u−v=((3(1+uv))/4)  u=(1/2)(((12(1−uv))/5)+((3(1+uv))/4))=((63−33uv)/(40))  u=(1/2)(((12(1−uv))/5)−((3(1+uv))/4))=((33−63uv)/(40))  uv=((63−33uv)/(40))×((33−63uv)/(40))  2079(uv)^2 −6658(uv)+2079=0  uv=((3329±2600)/(2079))=((77)/(27)) or  ((27)/(77))
$${u}=\mathrm{tan}\:{x},\:{v}=\mathrm{tan}\:{y} \\ $$$$\frac{{u}+{v}}{\mathrm{1}−{uv}}=\frac{\mathrm{12}}{\mathrm{5}}\:\Rightarrow{u}+{v}=\frac{\mathrm{12}\left(\mathrm{1}−{uv}\right)}{\mathrm{5}} \\ $$$$\mathrm{tan}\:\left({x}−{y}\right)=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\frac{{u}−{v}}{\mathrm{1}+{uv}}=\frac{\mathrm{3}}{\mathrm{4}}\:\Rightarrow{u}−{v}=\frac{\mathrm{3}\left(\mathrm{1}+{uv}\right)}{\mathrm{4}} \\ $$$${u}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{12}\left(\mathrm{1}−{uv}\right)}{\mathrm{5}}+\frac{\mathrm{3}\left(\mathrm{1}+{uv}\right)}{\mathrm{4}}\right)=\frac{\mathrm{63}−\mathrm{33}{uv}}{\mathrm{40}} \\ $$$${u}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{12}\left(\mathrm{1}−{uv}\right)}{\mathrm{5}}−\frac{\mathrm{3}\left(\mathrm{1}+{uv}\right)}{\mathrm{4}}\right)=\frac{\mathrm{33}−\mathrm{63}{uv}}{\mathrm{40}} \\ $$$${uv}=\frac{\mathrm{63}−\mathrm{33}{uv}}{\mathrm{40}}×\frac{\mathrm{33}−\mathrm{63}{uv}}{\mathrm{40}} \\ $$$$\mathrm{2079}\left({uv}\right)^{\mathrm{2}} −\mathrm{6658}\left({uv}\right)+\mathrm{2079}=\mathrm{0} \\ $$$${uv}=\frac{\mathrm{3329}\pm\mathrm{2600}}{\mathrm{2079}}=\frac{\mathrm{77}}{\mathrm{27}}\:{or}\:\:\frac{\mathrm{27}}{\mathrm{77}} \\ $$
Commented by naka3546 last updated on 25/May/21
Thank you, sir.
$$\mathrm{Thank}\:\mathrm{you},\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *