Tangent-to-the-curve-x-y-3-x-y-2-2-at-1-1- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 11172 by agni5 last updated on 15/Mar/17 Tangenttothecurve(x+y)3=(x−y+2)2at(−1,1). Answered by ajfour last updated on 15/Mar/17 y=x+2 Commented by ajfour last updated on 15/Mar/17 Commented by ajfour last updated on 15/Mar/17 as(x+y)3=(x−y+2)23(x+y)2(1+dydx)=2(x−y+2)(1−dydx)letx=−1+handy=1+kanditshouldbenoticedthat(dydx)x=−1=kh=m(say)⇒k=mhthedifferentiatedeqnnowbecomes3(−1+h+mh+1)2(1+m)=2(−1+h−1−mh+2)(1−m)3h2(1+m)3=2h(1−m)2⇒ash→0,m→1soeqnoftangentisy−1=m(x+1)andwithm=1itbecomesy=x+2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: f-x-ln-x-1-x-2-is-even-or-odd-give-reasion-Next Next post: developp-at-fourier-serie-f-x-1-sinx-real-gt-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.