Menu Close

tanx-cotxdx-




Question Number 76298 by benjo last updated on 26/Dec/19
∫(√( tanx+cotxdx))
tanx+cotxdx
Commented by benjo last updated on 26/Dec/19
Commented by john santuy last updated on 26/Dec/19
using Weirstrras metode.  let t=tan((x/2))
usingWeirstrrasmetode.lett=tan(x2)
Commented by benjo last updated on 26/Dec/19
please sir your write step by step
pleasesiryourwritestepbystep
Commented by mathmax by abdo last updated on 26/Dec/19
let I =∫ (√(tanx+(1/(tanx))))dx ⇒ I =∫(√(((sinx)/(cosx))+((cosx)/(sinx))))dx  =∫(√(1/(cosxsinx)))dx =∫(1/( (√((1/2)sin(2x)))))dx =∫ ((√2)/( (√(sin(2x)))))dx  vhangement (√(sin(2x)))=t give I =∫((√2)/t)((tdt)/( (√(1−t^4 )))) because  sin(2x)=t^2  ⇒2x =arcsin(t^2 ) ⇒2dx=((2tdt)/( (√(1−t^4 ))))  ⇒ I =∫ (((√2)dt)/( (√(1−t^4 )))) and this integral is not resoluble by elementary  functions..
letI=tanx+1tanxdxI=sinxcosx+cosxsinxdx=1cosxsinxdx=112sin(2x)dx=2sin(2x)dxvhangementsin(2x)=tgiveI=2ttdt1t4becausesin(2x)=t22x=arcsin(t2)2dx=2tdt1t4I=2dt1t4andthisintegralisnotresolublebyelementaryfunctions..
Answered by john santuy last updated on 26/Dec/19
I=∫secx(√(cotx ))dx  let cotx =u^2 →−csc^2 xdx=2u du  dx = −((2u du)/( (√(1+u^4 ))))  I=∫((√(1+u^4 ))/u^2 )×u^2  ×((2u)/( (√(1+u^4 )))) du  = −2∫u du=−u^2 +C  hence − cotx +C ■
I=secxcotxdxletcotx=u2csc2xdx=2ududx=2udu1+u4I=1+u4u2×u2×2u1+u4du=2udu=u2+Chencecotx+C◼
Commented by benjo last updated on 26/Dec/19
waw thanks sir
wawthankssir
Commented by MJS last updated on 26/Dec/19
sorry but that′s wrong  ∫(√(tan x +cot x))dx=∫(dx/( (√(sin x cos x))))=  =(√2)∫(dx/( (√(sin 2x))))  and this cannot be solved using elementary  calculus
sorrybutthatswrongtanx+cotxdx=dxsinxcosx==2dxsin2xandthiscannotbesolvedusingelementarycalculus
Commented by MJS last updated on 26/Dec/19
but (d/dx)[−cot x]=csc^2  x ≠ sec x (√(cot x))
butddx[cotx]=csc2xsecxcotx
Commented by john santu last updated on 26/Dec/19
tanx +(1/(tanx))=((tan^2 x+1)/(tanx))=((sec^2 x)/(tanx))  (√((sec^2 x)/(tanx)))=secx(√(cotx )) sir?
tanx+1tanx=tan2x+1tanx=sec2xtanxsec2xtanx=secxcotxsir?
Commented by john santu last updated on 26/Dec/19
oo yes sir. i′m wrong in dx = −((2u)/(((√(1+u^2 )))^2 )) du
ooyessir.imwrongindx=2u(1+u2)2du

Leave a Reply

Your email address will not be published. Required fields are marked *