Menu Close

Test-for-convergence-1-n-10-2-ln-lnn-nlnn-2-n-2-1-n-lnn-p-two-cases-of-p-to-look-at-3-n-2-1-n-n-lnn-4-n-1-10-n-n-2n-1-5-n-1-




Question Number 3564 by Yozzii last updated on 15/Dec/15
Test for convergence:  (1) Σ_(n=10) ^∞ (2^(ln(lnn)) /(nlnn))  (2)Σ_(n=2) ^∞ (1/(n(lnn)^p )) (two cases of p to look at)  (3)Σ_(n=2) ^∞ (((−1)^n (√n))/(lnn))  (4)Σ_(n=1) ^∞ ((10^n n)/((2n+1)!))  (5)Σ_(n=1) ^∞ ((n!)/n^n )  This post is my attempt to adhere to  the common agreement on infinite  series studying. Have fun!
Testforconvergence:(1)n=102ln(lnn)nlnn(2)n=21n(lnn)p(twocasesofptolookat)(3)n=2(1)nnlnn(4)n=110nn(2n+1)!(5)n=1n!nnThispostismyattempttoadheretothecommonagreementoninfiniteseriesstudying.Havefun!
Commented by prakash jain last updated on 15/Dec/15
Find sum or only check for convergence?
Findsumoronlycheckforconvergence?
Commented by Yozzii last updated on 15/Dec/15
Do as you please, but I only asked   about convergence. If a question  sparks further questions then fantastic!
Doasyouplease,butIonlyaskedaboutconvergence.Ifaquestionsparksfurtherquestionsthenfantastic!
Answered by prakash jain last updated on 15/Dec/15
5. a_n =((n!)/n^n ), a_(n+1) =(((n+1)!)/((n+1)^(n+1) ))  (a_(n+1) /a_n )=(((n+1)!n^n )/(n!(n+1)^(n+1) ))=(((n+1)n^n )/((n+1)(n+1)^n ))=((n/(1+n)))^n   lim_(n→∞) ((n/(1+n)))^n =lim_(x→0) (((1/x)/(1+1/x)))^(1/x) =lim_(x→0) ((1/(1+x)))^(1/x)   y=((1/(1+x)))^(1/x) ⇒ln y=−((ln (1+x))/x)  lim_(x→0)  ln y=lim_(x→0) −((1/(1+x))/1)=−1  lim_(x→0)  ((1/(1+x)))^(1/x) =(1/e)  (1/e)<1, hence by ratio test series converges.
5.an=n!nn,an+1=(n+1)!(n+1)n+1an+1an=(n+1)!nnn!(n+1)n+1=(n+1)nn(n+1)(n+1)n=(n1+n)nlimn(n1+n)n=limx0(1/x1+1/x)1/x=limx0(11+x)1/xy=(11+x)1/xlny=ln(1+x)xlimx0lny=limx011+x1=1limx0(11+x)1/x=1e1e<1,hencebyratiotestseriesconverges.
Answered by prakash jain last updated on 15/Dec/15
4. a_n =((10^n n)/((2n+1)!)) ⇒  (a_(n+1) /a_n )=((10(n+1))/(n(2n+2)(2n+3)))  lim_(n→∞)  ((10(n+1))/(n(2n+2)(2n+3)))=0  series converges
4.an=10nn(2n+1)!an+1an=10(n+1)n(2n+2)(2n+3)limn10(n+1)n(2n+2)(2n+3)=0seriesconverges
Answered by prakash jain last updated on 15/Dec/15
3. a_n =(((−1)^n (√n))/(ln n))  Ratio test, r_n = ((√(n+1))/(ln (n+1)))×((ln n)/( (√n)))  =(√(1+(1/n)))×((ln n)/(ln n+1))  lim_(n→0) r_n =1 (inconclusive)  lim_(n→∞) ∣a_n ∣=lim_(n→∞)  ((√n)/(ln n))=(∞/∞)  lim_(n→∞) ∣a_n ∣=lim_(n→∞)  ((√n)/(ln n))=lim_(n→∞) (n/(2(√n)))=∞  series diverges.
3.an=(1)nnlnnRatiotest,rn=n+1ln(n+1)×lnnn=1+1n×lnnlnn+1limn0rn=1(inconclusive)limnan∣=limnnlnn=limnan∣=limnnlnn=limnn2n=seriesdiverges.

Leave a Reply

Your email address will not be published. Required fields are marked *