Menu Close

Test-for-convergence-of-the-series-sin-nx-n-2-n-1-




Question Number 6268 by sanusihammed last updated on 21/Jun/16
Test for convergence of the series   ∞  Σ     ((sin(nx))/n^2 )  n = 1
TestforconvergenceoftheseriesΣsin(nx)n2n=1
Commented by FilupSmith last updated on 21/Jun/16
sin(ax+b)∈(−1, 1)  ∴ ∃k:n^k ≥sin(ax+b),   k,n∈Z^+     lim_(n→∞)  ((sin(nx))/n^2 ) = ((constant)/∞),   constant∈(−1, 1)  =0    ∴ limit converges
sin(ax+b)(1,1)k:nksin(ax+b),k,nZ+limnsin(nx)n2=constant,constant(1,1)=0limitconverges
Commented by sanusihammed last updated on 21/Jun/16
Thanks
Thanks
Answered by Yozzii last updated on 21/Jun/16
Since ∣sin(nx)∣≤1 for all n,x∈R  ⇒((∣sin(nx)∣)/n^2 )≤(1/n^2 )  ⇒Σ_(n=1) ^∞ ((∣sin(nx)∣)/n^2 )≤Σ_(n=1) ^∞ (1/n^2 )  Now, Σ_(n=1) ^∞ (1/n^2 ) is convergent. (ζ(2)=Σ_(n=1) ^∞ (1/n^2 )=(π^2 /6)).  Since Σ_(n=1) ^∞ (1/n^2 )  is convergent and Σ_(n=1) ^∞ ((∣sin(nx)∣)/n^2 )≤Σ_(n=1) ^∞ (1/n^2 ),  then the comparison test states that   Σ_(n=1) ^∞ ((∣sin(nx)∣)/n^2 )=Σ_(n=1) ^∞ ∣((sin(nx))/n^2 )∣ is convergent. Since  for an absolutely convergent series Σ∣a_n ∣  implies that Σa_n  is convergent, then  Σ_(n=1) ^∞ ((sin(nx))/n^2 ) is convergent.
Sincesin(nx)∣⩽1foralln,xRsin(nx)n21n2n=1sin(nx)n2n=11n2Now,n=11n2isconvergent.(ζ(2)=n=11n2=π26).Sincen=11n2isconvergentandn=1sin(nx)n2n=11n2,thenthecomparisonteststatesthatn=1sin(nx)n2=n=1sin(nx)n2isconvergent.SinceforanabsolutelyconvergentseriesΣanimpliesthatΣanisconvergent,thenn=1sin(nx)n2isconvergent.
Commented by sanusihammed last updated on 21/Jun/16
Thanks for help
Thanksforhelp

Leave a Reply

Your email address will not be published. Required fields are marked *