Menu Close

the-bottom-1-2-of-log-1-2-x-wants-to-make-2-2-how-




Question Number 6877 by sarathon last updated on 01/Aug/16
the bottom((1/2)) of  log_(1/2) x  wants to make  2  2  how??
$$\mathrm{the}\:\mathrm{bottom}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\mathrm{of}\:\:{log}_{\frac{\mathrm{1}}{\mathrm{2}}} {x}\:\:\mathrm{wants}\:\mathrm{to}\:\mathrm{make}\:\:\mathrm{2} \\ $$$$\mathrm{2}\:\:\mathrm{how}?? \\ $$$$ \\ $$
Commented by Tawakalitu. last updated on 01/Aug/16
log_(1/2) x  = log_2^(−1)  x  = − 1 log_2 ^x   = log_2 x^(−1)   = log_2 ^(1/x)
$${log}_{\frac{\mathrm{1}}{\mathrm{2}}} {x} \\ $$$$=\:{log}_{\mathrm{2}^{−\mathrm{1}} } {x} \\ $$$$=\:−\:\mathrm{1}\:{log}_{\mathrm{2}} ^{{x}} \\ $$$$=\:{log}_{\mathrm{2}} {x}^{−\mathrm{1}} \\ $$$$=\:{log}_{\mathrm{2}} ^{\frac{\mathrm{1}}{{x}}} \\ $$$$ \\ $$
Answered by Rasheed Soomro last updated on 01/Aug/16
Let   log_(1/2) x=y  ((1/2))^y =x  (2^(-1) )^y =x  2^(-y) =x  log_2 x=−y  y=−log_2 x=log_2 x^(-1)   Hence log_(1/2) x=log_2 ((1/x))
$${Let}\:\:\:{log}_{\frac{\mathrm{1}}{\mathrm{2}}} {x}={y} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{y}} ={x} \\ $$$$\left(\mathrm{2}^{-\mathrm{1}} \right)^{{y}} ={x} \\ $$$$\mathrm{2}^{-{y}} ={x} \\ $$$${log}_{\mathrm{2}} {x}=−{y} \\ $$$${y}=−{log}_{\mathrm{2}} {x}={log}_{\mathrm{2}} {x}^{-\mathrm{1}} \\ $$$${Hence}\:{log}_{\frac{\mathrm{1}}{\mathrm{2}}} {x}={log}_{\mathrm{2}} \left(\frac{\mathrm{1}}{{x}}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *