Menu Close

the-curve-y-f-x-when-f-x-is-a-quadratic-expression-has-a-maximum-value-point-at-1-4-The-curve-touches-the-line-6x-y-13-Find-the-value-of-x-for-which-y-8-




Question Number 71196 by Rio Michael last updated on 12/Oct/19
the curve y = f(x), when f(x) is a quadratic expression has   a maximum value point at (1,4). The curve touches the line  6x + y = 13. Find the value of x for which y = 8
thecurvey=f(x),whenf(x)isaquadraticexpressionhasamaximumvaluepointat(1,4).Thecurvetouchestheline6x+y=13.Findthevalueofxforwhichy=8
Answered by MJS last updated on 12/Oct/19
f(x) is quadratic ⇔ y=ax^2 +bx+c   ((1),(4) )∈f(x) ⇔ 4=a+b+c ⇒ c=4−a−b  ⇒ y=ax^2 +bx+4−a−b  maximum at  ((1),(4) ) ⇔ f′(1)=0 ∧ f′′(1)<0  y′=2ax+b → 2a+b=0 ⇒ b=−2a  y′′=2a → a<0  ⇒ y=ax^2 −2ax+a+4  y=13−6x is tangent  tangent in  ((p),((f(p))) )∈f(x): y=2a(p−1)x+a(1−p^2 )+4  ⇒ 2a(p−1)=−6∧a(1−p^2 )+4=13  ⇒ a=−3∧p=2  ⇒ y=−3x^2 +6x+1  y=8 ⇒ 8=−3x^2 +6x+1 ⇒ x=1±((2(√3))/3)i
f(x)isquadraticy=ax2+bx+c(14)f(x)4=a+b+cc=4aby=ax2+bx+4abmaximumat(14)f(1)=0f(1)<0y=2ax+b2a+b=0b=2ay=2aa<0y=ax22ax+a+4y=136xistangenttangentin(pf(p))f(x):y=2a(p1)x+a(1p2)+42a(p1)=6a(1p2)+4=13a=3p=2y=3x2+6x+1y=88=3x2+6x+1x=1±233i
Commented by Rio Michael last updated on 13/Oct/19
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *