Question Number 10157 by ketto last updated on 27/Jan/17
$${the}\:{difference}\:{of}\:{two}\:{number}\:{is}\:\mathrm{3}. \\ $$$${if}\:{the}\:{sum}\:{of}\:{their}\:{reciprocal}\:{is}\: \\ $$$$\frac{\mathrm{7}}{\mathrm{10}}\:.\:{find}\:{the}\:{numbres} \\ $$
Answered by FilupSmith last updated on 28/Jan/17
$${a}−{b}=\mathrm{3}\:\:\:\:\Rightarrow\:\:\:\:{a}=\mathrm{3}+{b} \\ $$$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=\frac{\mathrm{7}}{\mathrm{10}} \\ $$$$\frac{{a}+{b}}{{ab}}=\frac{\mathrm{7}}{\mathrm{10}} \\ $$$$\frac{\mathrm{3}+{b}+{b}}{\left(\mathrm{3}+{b}\right){b}}=\frac{\mathrm{7}}{\mathrm{10}} \\ $$$$\frac{\mathrm{3}+\mathrm{2}{b}}{\mathrm{3}{b}+{b}^{\mathrm{2}} }=\frac{\mathrm{7}}{\mathrm{10}} \\ $$$$\mathrm{10}\left(\mathrm{3}+\mathrm{2}{b}\right)=\mathrm{7}\left(\mathrm{3}{b}+{b}^{\mathrm{2}} \right) \\ $$$$\mathrm{30}+\mathrm{20}{b}=\mathrm{21}{b}+\mathrm{7}{b}^{\mathrm{2}} \\ $$$$\mathrm{7}{b}^{\mathrm{2}} +{b}−\mathrm{30}=\mathrm{0} \\ $$$${b}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{840}}}{\mathrm{14}} \\ $$$${b}=\frac{−\mathrm{1}\pm\mathrm{29}}{\mathrm{14}} \\ $$$${b}\:=\:\:\:\:\mathrm{2},\:\:\:\:−\frac{\mathrm{15}}{\mathrm{7}} \\ $$$$\: \\ $$$${a}=\mathrm{3}+{b} \\ $$$$\therefore\:{a}=\mathrm{5},\:\left(\mathrm{3}−\frac{\mathrm{15}}{\mathrm{7}}\right) \\ $$