Menu Close

The-eccentricity-of-the-hyperbola-x-2-64-y-2-36-1-is-A-5-4-B-3-4-C-4-5-D-4-3-




Question Number 76811 by Rio Michael last updated on 30/Dec/19
The eccentricity of the hyperbola     (x^2 /(64)) − (y^2 /(36)) = 1 is   A. (5/4)  B. (3/4)  C. (4/5)  D. (4/3)
$$\mathrm{The}\:\mathrm{eccentricity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{hyperbola} \\ $$$$\:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{64}}\:−\:\frac{{y}^{\mathrm{2}} }{\mathrm{36}}\:=\:\mathrm{1}\:\mathrm{is}\: \\ $$$$\mathrm{A}.\:\frac{\mathrm{5}}{\mathrm{4}} \\ $$$$\mathrm{B}.\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\mathrm{C}.\:\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\mathrm{D}.\:\frac{\mathrm{4}}{\mathrm{3}} \\ $$
Commented by MJS last updated on 31/Dec/19
e^2 =a^2 +b^2   a=8; b=6  ⇒  e=10 [this is the linear eccentricity]  ε=(e/a)=(5/4) [this is the numeric eccentricity]
$${e}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$${a}=\mathrm{8};\:{b}=\mathrm{6} \\ $$$$\Rightarrow \\ $$$${e}=\mathrm{10}\:\left[\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{linear}\:\mathrm{eccentricity}\right] \\ $$$$\epsilon=\frac{{e}}{{a}}=\frac{\mathrm{5}}{\mathrm{4}}\:\left[\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{numeric}\:\mathrm{eccentricity}\right] \\ $$
Commented by Rio Michael last updated on 31/Dec/19
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *