Menu Close

The-equation-of-an-ellipse-is-given-as-x-2-y-2xcot2-2-1-0-lt-lt-0-25pi-Show-that-the-minimum-and-maximum-distances-from-the-centre-to-the-circumference-of-this-ellipse-are-tan-and-cot




Question Number 2168 by Yozzi last updated on 06/Nov/15
The equation of an ellipse is given  as     x^2 +(y+2xcot2θ)^2 =1    (0<θ<0.25π).  Show that the minimum and maximum  distances from the centre to the   circumference of this ellipse are  tanθ and cotθ respectively.
Theequationofanellipseisgivenasx2+(y+2xcot2θ)2=1(0<θ<0.25π).Showthattheminimumandmaximumdistancesfromthecentretothecircumferenceofthisellipsearetanθandcotθrespectively.
Answered by prakash jain last updated on 07/Nov/15
x^2 +y^2 +4xycot 2θ+4x^2 cot^2 2θ−1=0  x^2 (1+4cot^2 2θ)+y^2 +4xycot 2θ−1=0  x=x_1 cos α+y_1 sin α  y=−x_1 sin  α+y_1 cos α  xy co−efficient after rotation  2(1+4cot^2 2θ)cos αsin α−2sin αcos α+4cos2αcot2θ=0  4cot^2 2θsin 2α+4cos2αcot 2θ=0  α=−θ  New coefficient after rotation  ax^2 +bxy+cy^2 +dx+ey+f=0  a=(1+4cot^2 2θ)cos^2 θ−4cot2θsin θcosθ+sin^2 θ  b=0  c=(1+4cot^2 2θ)sin^2 θ+4cot2θsin θcos θ+cos^2 θ  d=0  e=0  f=1  more simplication to be done but it should  reduce to the form  (x_1 ^2 /A^2 )+(y_1 ^2 /B^2 )=1
x2+y2+4xycot2θ+4x2cot22θ1=0x2(1+4cot22θ)+y2+4xycot2θ1=0x=x1cosα+y1sinαy=x1sinα+y1cosαxycoefficientafterrotation2(1+4cot22θ)cosαsinα2sinαcosα+4cos2αcot2θ=04cot22θsin2α+4cos2αcot2θ=0α=θNewcoefficientafterrotationax2+bxy+cy2+dx+ey+f=0a=(1+4cot22θ)cos2θ4cot2θsinθcosθ+sin2θb=0c=(1+4cot22θ)sin2θ+4cot2θsinθcosθ+cos2θd=0e=0f=1moresimplicationtobedonebutitshouldreducetotheformx12A2+y12B2=1

Leave a Reply

Your email address will not be published. Required fields are marked *