Question Number 2168 by Yozzi last updated on 06/Nov/15
$${The}\:{equation}\:{of}\:{an}\:{ellipse}\:{is}\:{given} \\ $$$${as}\: \\ $$$$\:\:{x}^{\mathrm{2}} +\left({y}+\mathrm{2}{xcot}\mathrm{2}\theta\right)^{\mathrm{2}} =\mathrm{1}\:\:\:\:\left(\mathrm{0}<\theta<\mathrm{0}.\mathrm{25}\pi\right). \\ $$$${Show}\:{that}\:{the}\:{minimum}\:{and}\:{maximum} \\ $$$${distances}\:{from}\:{the}\:{centre}\:{to}\:{the}\: \\ $$$${circumference}\:{of}\:{this}\:{ellipse}\:{are} \\ $$$${tan}\theta\:{and}\:{cot}\theta\:{respectively}.\: \\ $$$$ \\ $$
Answered by prakash jain last updated on 07/Nov/15
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}{xy}\mathrm{cot}\:\mathrm{2}\theta+\mathrm{4}{x}^{\mathrm{2}} \mathrm{cot}^{\mathrm{2}} \mathrm{2}\theta−\mathrm{1}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{4cot}^{\mathrm{2}} \mathrm{2}\theta\right)+{y}^{\mathrm{2}} +\mathrm{4}{xy}\mathrm{cot}\:\mathrm{2}\theta−\mathrm{1}=\mathrm{0} \\ $$$${x}={x}_{\mathrm{1}} \mathrm{cos}\:\alpha+{y}_{\mathrm{1}} \mathrm{sin}\:\alpha \\ $$$${y}=−{x}_{\mathrm{1}} \mathrm{sin}\:\:\alpha+{y}_{\mathrm{1}} \mathrm{cos}\:\alpha \\ $$$${xy}\:{co}−{efficient}\:{after}\:{rotation} \\ $$$$\mathrm{2}\left(\mathrm{1}+\mathrm{4cot}^{\mathrm{2}} \mathrm{2}\theta\right)\mathrm{cos}\:\alpha\mathrm{sin}\:\alpha−\mathrm{2sin}\:\alpha\mathrm{cos}\:\alpha+\mathrm{4cos2}\alpha\mathrm{cot2}\theta=\mathrm{0} \\ $$$$\mathrm{4cot}^{\mathrm{2}} \mathrm{2}\theta\mathrm{sin}\:\mathrm{2}\alpha+\mathrm{4cos2}\alpha\mathrm{cot}\:\mathrm{2}\theta=\mathrm{0} \\ $$$$\alpha=−\theta \\ $$$$\mathrm{New}\:\mathrm{coefficient}\:\mathrm{after}\:\mathrm{rotation} \\ $$$${ax}^{\mathrm{2}} +{bxy}+{cy}^{\mathrm{2}} +{dx}+{ey}+{f}=\mathrm{0} \\ $$$${a}=\left(\mathrm{1}+\mathrm{4cot}^{\mathrm{2}} \mathrm{2}\theta\right)\mathrm{cos}^{\mathrm{2}} \theta−\mathrm{4cot2}\theta\mathrm{sin}\:\theta\mathrm{cos}\theta+\mathrm{sin}^{\mathrm{2}} \theta \\ $$$${b}=\mathrm{0} \\ $$$${c}=\left(\mathrm{1}+\mathrm{4cot}^{\mathrm{2}} \mathrm{2}\theta\right)\mathrm{sin}^{\mathrm{2}} \theta+\mathrm{4cot2}\theta\mathrm{sin}\:\theta\mathrm{cos}\:\theta+\mathrm{cos}^{\mathrm{2}} \theta \\ $$$${d}=\mathrm{0} \\ $$$${e}=\mathrm{0} \\ $$$${f}=\mathrm{1} \\ $$$${more}\:{simplication}\:{to}\:{be}\:{done}\:{but}\:{it}\:{should} \\ $$$${reduce}\:{to}\:{the}\:{form} \\ $$$$\frac{{x}_{\mathrm{1}} ^{\mathrm{2}} }{{A}^{\mathrm{2}} }+\frac{{y}_{\mathrm{1}} ^{\mathrm{2}} }{{B}^{\mathrm{2}} }=\mathrm{1} \\ $$$$ \\ $$