Menu Close

The-first-two-terms-of-the-a-n-series-are-defind-as-a-n-a-n-1-a-n-2-for-the-general-term-a-1-5-a-2-8-and-n-3-since-the-L-lim-n-a-n-1-a-n-what-is-the-value-of-L-




Question Number 143519 by tugu last updated on 15/Jun/21
   The first two terms of the {a_n } series   are defind as a_n =a_(n−1) +a_(n−2)   for the general term   a_1 =5, a_2 =8 and n≥3 .  since the L=lim_(n→∞) (a_(n+1) /a_n )  what is the value of L
Thefirsttwotermsofthe{an}seriesaredefindasan=an1+an2forthegeneralterma1=5,a2=8andn3.sincetheL=limnan+1anwhatisthevalueofL
Answered by mathmax by abdo last updated on 15/Jun/21
a_n =a_(n−1) +a_(n−2)  ⇒a_(n+2) =a_(n+1) +a_n  ⇒a_(n+2) −a_(n+1) −a_n =0  (ec)→x^2 −x−1=0 →Δ=1+4=5 ⇒x_1 =((1+(√5))/2) and x_2 =((1−(√5))/2)  ⇒a_n =α(((1+(√5))/2))^n  +β(((1−(√5))/2))^n   a_(1 ) =5 ⇒α(((1+(√5))/2))+β(((1−(√5))/2))=5  a_2 =8 ⇒α(((1+(√5))/2))^2  +β(((1−(√5))/2))^2  =8  we get the system   { ((((1+(√5))/2)α +((1−(√5))/2)β=5)),(((((1+(√5))/2))^2 α +(((1−(√5))/2))^2 β=8)) :}  Δ_s =(((1+(√5))(1−(√5))^2 )/8)−(((1−(√5))(1+(√5))^2 )/8)  =−(1/2)(1−(√5))+(1/2)(1+(√5)) =(1/2)(1+(√5)−1+(√5))=(√5)  Δ_α = determinant (((5                ((1−(√5))/2))),((8                (((1−(√5))/2))^2 )))=(5/4)(1−(√5))^2 −4(1−(√5))  =(5/4)(6−2(√5))−4+4(√5)=(5/2)(3−(√5))−4+4(√5)=((15)/2)−4−((5(√5))/2)+4(√5)  =(7/2)+(3/2)(√(5 )) ⇒α=((7+3(√5))/(2(√5)))  Δ_β = determinant (((((1+(√5))/2)             5)),(((((1+(√5))/2))^2         8)))=4(1+(√5))−(5/4)(1+(√5))^2   =4+4(√5)−(5/4)(6+2(√5)) =4+4(√5)−(5/2)(3+(√5))=4+4(√5)−((15)/2)−((5(√5))/2)  =−(7/2) +(3/2)(√5) ⇒β =((−7+3(√5))/(2(√5))) ⇒  a_n =(((7+3(√5))/(2(√5))))(((1+(√5))/2))^n  +(((−7+3(√5))/(2(√5))))(((1−(√5))/2))^n   ⇒a_n =(((7+3(√5))(1+(√5))^n )/(2^(n+1) ((√5)))) +(((−7+3(√5))(1−(√5))^n )/(2^(n+1) ((√5))))  =(1/(((√5))2^(n+1) )){ (7+3(√5))(1+(√5))^n −(7−3(√5))(1−(√5))^n }  rest to calculate (a_(n+1) /a_n )  ....be continued...
an=an1+an2an+2=an+1+anan+2an+1an=0(ec)x2x1=0Δ=1+4=5x1=1+52andx2=152an=α(1+52)n+β(152)na1=5α(1+52)+β(152)=5a2=8α(1+52)2+β(152)2=8wegetthesystem{1+52α+152β=5(1+52)2α+(152)2β=8Δs=(1+5)(15)28(15)(1+5)28=12(15)+12(1+5)=12(1+51+5)=5Δα=|51528(152)2|=54(15)24(15)=54(625)4+45=52(35)4+45=1524552+45=72+325α=7+3525Δβ=|1+525(1+52)28|=4(1+5)54(1+5)2=4+4554(6+25)=4+4552(3+5)=4+45152552=72+325β=7+3525an=(7+3525)(1+52)n+(7+3525)(152)nan=(7+35)(1+5)n2n+1(5)+(7+35)(15)n2n+1(5)=1(5)2n+1{(7+35)(1+5)n(735)(15)n}resttocalculatean+1an.becontinued
Answered by mr W last updated on 15/Jun/21
x^2 −x−1=0  x=((1±(√5))/2)  a_n =A(((1+(√5))/2))^n +B(((1−(√5))/2))^n   a_0 =a_2 −a_1 =8−5=3=A+B   ...(i)  a_1 =5=A(((1+(√5))/2))+B(((1−(√5))/2))   ...(ii)  ⇒A=((15+7(√5))/(10))  ⇒B=((15−7(√5))/(10))  a_n =(((15+7(√5))/(10)))(((1+(√5))/2))^n +(((15−7(√5))/(10)))(((1−(√5))/2))^n   a_n =(((1+(√5))/2))^n [(((15+7(√5))/(10)))+(((15−7(√5))/(10)))(((1−(√5))/(1+(√5))))^n ]  (a_(n+1) /a_n )=(((1+(√5))/2))×(((((15+7(√5))/(10)))+(((15−7(√5))/(10)))(((1−(√5))/(1+(√5))))^(n+1) )/((((15+7(√5))/(10)))+(((15−7(√5))/(10)))(((1−(√5))/(1+(√5))))^n ))  lim_(n→∞) (a_(n+1) /a_n )=(((1+(√5))/2))×(((((15+7(√5))/(10)))+(((15−7(√5))/(10)))×0)/((((15+7(√5))/(10)))+(((15−7(√5))/(10)))×0))=((1+(√5))/2)=ϕ
x2x1=0x=1±52an=A(1+52)n+B(152)na0=a2a1=85=3=A+B(i)a1=5=A(1+52)+B(152)(ii)A=15+7510B=157510an=(15+7510)(1+52)n+(157510)(152)nan=(1+52)n[(15+7510)+(157510)(151+5)n]an+1an=(1+52)×(15+7510)+(157510)(151+5)n+1(15+7510)+(157510)(151+5)nlimnan+1an=(1+52)×(15+7510)+(157510)×0(15+7510)+(157510)×0=1+52=φ
Answered by mr W last updated on 15/Jun/21
a_(n+1) =a_n +a_(n−1)   (a_(n+1) /a_n )=1+(1/(a_n /a_(n−1) ))  lim_(n→∞) (a_(n+1) /a_n )=1+(1/(lim_(n→∞) (a_n /a_(n−1) )))  L=1+(1/L) >1  L^2 −L−1=0  ⇒L=((1+(√5))/2)
an+1=an+an1an+1an=1+1anan1limnan+1an=1+1limnanan1L=1+1L>1L2L1=0L=1+52

Leave a Reply

Your email address will not be published. Required fields are marked *