The-following-image-shows-the-functiond-f-x-xe-1-1-x-and-g-x-x-1-Can-you-explain-as-to-why-as-f-x-that-f-x-g-x- Tinku Tara June 3, 2023 Limits 0 Comments FacebookTweetPin Question Number 4281 by Filup last updated on 07/Jan/16 Thefollowingimageshowsthefunctiondf(x)=xe11−xandg(x)=x−1Canyouexplainastowhyas∣f(x)∣→∞,thatf(x)→g(x). Commented by Filup last updated on 07/Jan/16 Commented by Filup last updated on 07/Jan/16 x→±∞,∣x∣→∞limx→∞xe11−x=∞e0=∞(1)limx→∞x−1=∞(2)(1)and(2)tendtoinfinity.Thuslimitsareequal. Commented by Yozzii last updated on 07/Jan/16 f(x)=xe11−x(x≠1)f′(x)=e(1−x)−1+x×(1−x)−2e(1−x)−1f′(x)=e11−x(1+x(x−1)2)f′(x)=e(1−x)−1(x2−x+1x2−2x+1)f′(x)=e(1−x)−1(1−1x+1x21−2x+1x2)∴l=limx→∞f′(x)=limx→∞{e11−x(1−1x+1x21−2x+1x2)}l=e1−∞1−0+01−0+0=1=g′(x)forx>1.So,thegraphoff(x)isapproximatelyparalleltothatofg(x)forsufficientlylargevaluesofx.lnf(x)=lnx+11−x∴limx→1+lnf(x)=ln1−∞=−∞∴limx→1+f(x)=e−∞=0So,x=1istheapproximaterootoff(x)=0.Also,limx→∞lnf(x)=∞⇒f(x)→∞whilef′(x)→1.So,astraightlineapproximatesf(x)forlargex.Giventhatf′(x)→1asx→∞forx>1andx=1isarootoff(x)=0,anasymptotetof(x)asx→∞isfoundtobey−0=(1)(x−1)⇒y=x−1whichisthefunctiong(x). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: An-online-trading-company-wants-to-offer-discounts-to-customers-The-company-has-recently-emailed-the-discount-codes-to-customers-New-customers-must-have-the-code-to-be-eligible-but-returning-custNext Next post: Probability-Urn-I-contains-5-red-and-3-green-balls-Urn-II-contains-2-red-and-7-green-balls-One-balls-is-transferred-at-random-from-urn-I-to-urn-II-After-stirring-1-ball-is-chosen-from-urn-II- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.