Menu Close

The-following-image-shows-the-functiond-f-x-xe-1-1-x-and-g-x-x-1-Can-you-explain-as-to-why-as-f-x-that-f-x-g-x-




Question Number 4281 by Filup last updated on 07/Jan/16
The following image shows the functiond  f(x)=xe^(1/(1−x))         and      g(x)=x−1    Can you explain as to why as ∣f(x)∣→∞,  that f(x)→g(x).
Thefollowingimageshowsthefunctiondf(x)=xe11xandg(x)=x1Canyouexplainastowhyasf(x)∣→,thatf(x)g(x).
Commented by Filup last updated on 07/Jan/16
Commented by Filup last updated on 07/Jan/16
x→±∞, ∣x∣→∞  lim_(x→∞)  xe^(1/(1−x)) =∞e^0 =∞   (1)  lim_(x→∞)  x−1=∞                   (2)  (1) and (2) tend to infinity. Thus limits  are equal.
x±,x∣→limxxe11x=e0=(1)limxx1=(2)(1)and(2)tendtoinfinity.Thuslimitsareequal.
Commented by Yozzii last updated on 07/Jan/16
f(x)=xe^(1/(1−x))     (x≠1)  f^′ (x)=e^((1−x)^(−1) ) +x×(1−x)^(−2) e^((1−x)^(−1) )   f^′ (x)=e^(1/(1−x)) (1+(x/((x−1)^2 )))  f^′ (x)=e^((1−x)^(−1) ) (((x^2 −x+1)/(x^2 −2x+1)))  f^′ (x)=e^((1−x)^(−1) ) (((1−(1/x)+(1/x^2 ))/(1−(2/x)+(1/x^2 ))))  ∴ l=lim_(x→∞) f^′ (x)=lim_(x→∞) {e^(1/(1−x)) (((1−(1/x)+(1/x^2 ))/(1−(2/x)+(1/x^2 ))))}  l=e^(1/(−∞)) ((1−0+0)/(1−0+0))=1=g^′ (x) for x>1.  So, the graph of f(x) is approximately  parallel to that of g(x) for sufficiently  large values of x.  lnf(x)=lnx+(1/(1−x))  ∴lim_(x→1^+ ) lnf(x)=ln1−∞=−∞  ∴ lim_(x→1^+ ) f(x)=e^(−∞) =0  So, x=1 is the approximate root of f(x)=0.  Also, lim_(x→∞) lnf(x)=∞⇒f(x)→∞  while f′(x)→1. So, a straight line   approximates f(x) for large x.  Given that f^′ (x)→1 as x→∞  for x>1  and x=1 is a root of f(x)=0, an   asymptote to f(x) as x→∞ is found to  be y−0=(1)(x−1)⇒y=x−1 which  is the function g(x).
f(x)=xe11x(x1)f(x)=e(1x)1+x×(1x)2e(1x)1f(x)=e11x(1+x(x1)2)f(x)=e(1x)1(x2x+1x22x+1)f(x)=e(1x)1(11x+1x212x+1x2)l=limxf(x)=limx{e11x(11x+1x212x+1x2)}l=e110+010+0=1=g(x)forx>1.So,thegraphoff(x)isapproximatelyparalleltothatofg(x)forsufficientlylargevaluesofx.lnf(x)=lnx+11xlimx1+lnf(x)=ln1=limx1+f(x)=e=0So,x=1istheapproximaterootoff(x)=0.Also,limxlnf(x)=f(x)whilef(x)1.So,astraightlineapproximatesf(x)forlargex.Giventhatf(x)1asxforx>1andx=1isarootoff(x)=0,anasymptotetof(x)asxisfoundtobey0=(1)(x1)y=x1whichisthefunctiong(x).

Leave a Reply

Your email address will not be published. Required fields are marked *