Menu Close

the-function-f-with-variable-x-satisfies-the-equation-x-2-f-x-2x-f-x-arctan-x-for-0-lt-arctan-x-lt-pi-2-and-f-1-pi-4-find-f-x-




Question Number 140896 by bramlexs22 last updated on 14/May/21
the function f with variable x  satisfies the equation   x^2  f ′(x) +2x f(x) = arctan x for   0 < arctan x <(π/2) and f(1)=(π/4).  find f(x).
thefunctionfwithvariablexsatisfiestheequationx2f(x)+2xf(x)=arctanxfor0<arctanx<π2andf(1)=π4.findf(x).
Answered by EDWIN88 last updated on 15/May/21
let g(x)= x^2 f(x) , diff wrt x give  g ′(x)= x^2  f ′(x)+2x f(x)   so that g ′(x)= arctan x   integration by part   g(x)=∫ arctan x dx = x arctan x −(1/2)ln (1+x^2 )+c  the condition g(1)= f(1)= (π/4)  ⇒(π/4)= arctan 1 −(1/2)ln (2) + c  ⇒c = ln (√2)   ∴ f(x)= ((g(x))/x^2 ) = ((arctan x )/x)−((ln (√(1+x^2 )))/x^2 ) + ((ln (√2))/x^2 )
letg(x)=x2f(x),diffwrtxgiveg(x)=x2f(x)+2xf(x)sothatg(x)=arctanxintegrationbypartg(x)=arctanxdx=xarctanx12ln(1+x2)+ctheconditiong(1)=f(1)=π4π4=arctan112ln(2)+cc=ln2f(x)=g(x)x2=arctanxxln1+x2x2+ln2x2
Answered by mathmax by abdo last updated on 14/May/21
f(x)=y  e ⇒x^2  y^′  +2xy=arctanx  and y(1)=(π/4)  h→xy^′  +2y=0 ⇒xy^′  =−2y ⇒(y^′ /y)=−(2/x) ⇒ln∣y∣=−2log∣x∣ +c ⇒  y =(k/x^2 )     mvc method→y^′  =(k^′ /x^2 ) +k(((−2x)/x^4 ))=(k^′ /x^2 )−((2k)/x^3 )  e⇒k^′  −((2k)/x) +((2k)/x) =arctanx ⇒k =∫ arctanx dx  =xarctanx −∫ (x/(1+x^2 ))dx =xarctan(x)−(1/2)log(1+x^2 )+C ⇒  y(x)=(1/x^2 )(xarctan(x)−(1/2)log(1+x^2 )+C)  =((arctan(x))/x)−(1/(2x^2 ))log(1+x^2 )+(c/x^2 )=f(x)  f(1)=(π/4) ⇒(π/4)−(1/2)log2 +C =(π/4) ⇒C=(1/2)log2 ⇒  f(x)=((arctan(x))/x)−(1/(2x^2 ))log(1+x^2 )+((log2)/(2x^2 ))
f(x)=yex2y+2xy=arctanxandy(1)=π4hxy+2y=0xy=2yyy=2xlny∣=2logx+cy=kx2mvcmethody=kx2+k(2xx4)=kx22kx3ek2kx+2kx=arctanxk=arctanxdx=xarctanxx1+x2dx=xarctan(x)12log(1+x2)+Cy(x)=1x2(xarctan(x)12log(1+x2)+C)=arctan(x)x12x2log(1+x2)+cx2=f(x)f(1)=π4π412log2+C=π4C=12log2f(x)=arctan(x)x12x2log(1+x2)+log22x2

Leave a Reply

Your email address will not be published. Required fields are marked *