Menu Close

The-gamma-function-s-0-e-x-x-s-1-dx-How-to-calculate-the-gamma-function-in-an-easy-and-not-time-consuming-way-




Question Number 9233 by geovane10math last updated on 24/Nov/16
The gamma function                     Γ(s) = ∫_0 ^∞ e^(−x) x^(s−1)  dx  How to calculate the gamma function  in an easy and not time-consuming   way?
ThegammafunctionΓ(s)=0exxs1dxHowtocalculatethegammafunctioninaneasyandnottimeconsumingway?
Answered by 123456 last updated on 25/Nov/16
Γ(s+1)=s!  you can use stirling aproxiation for  large s, also any good aproximation  can be made by  Γ(s+1)=sΓ(s)⇔Γ(s)=((Γ(s+1))/s)  1: for ∣s∣>ε (ε large enough)  get aproximate value via stirling  2: for ∣s∣≤ε  get value via Γ(s)=((Γ(s+1))/s)  −−−−−−−−−−−−−−−−  not sure if it eficient but it work :v
Γ(s+1)=s!youcanusestirlingaproxiationforlarges,alsoanygoodaproximationcanbemadebyΓ(s+1)=sΓ(s)Γ(s)=Γ(s+1)s1:fors∣>ϵ(ϵlargeenough)getaproximatevalueviastirling2:fors∣⩽ϵgetvalueviaΓ(s)=Γ(s+1)snotsureifiteficientbutitwork:v
Commented by 123456 last updated on 25/Nov/16
Γ(s)=((Γ(s+1))/s)  Γ(s+1)=((Γ(s+2))/(s+1))⇒Γ(s)=((Γ(s+2))/(s(s+1)))  ...  Γ(s)=((Γ(s+a))/(s(s+1)...(s+a−1)))  a∈N,a>0
Γ(s)=Γ(s+1)sΓ(s+1)=Γ(s+2)s+1Γ(s)=Γ(s+2)s(s+1)Γ(s)=Γ(s+a)s(s+1)(s+a1)aN,a>0

Leave a Reply

Your email address will not be published. Required fields are marked *