Menu Close

The-largest-interval-for-which-x-12-x-9-x-4-x-1-gt-0-is-a-4-lt-x-0-b-0-lt-x-lt-1-c-100-lt-x-lt-100-d-lt-x-lt-




Question Number 75013 by necxxx last updated on 05/Dec/19
The largest interval for which  x^(12) −x^9 +x^4 −x+1>0 is  (a)−4<x≤0  (b)0<x<1  (c)−100<x<100  (d)−∞<x<∞
Thelargestintervalforwhichx12x9+x4x+1>0is(a)4<x0(b)0<x<1(c)100<x<100(d)<x<
Answered by mind is power last updated on 05/Dec/19
let p(x)=x^(12) −x^9 +x^4 −x+1  if x<0  −x^9 >0,−x>0⇒p(x)≥1⇒p(x)>0  x>0  x^(12) −x^9 =x^9 (x^3 −1)  x^4 −x=x(x^3 −1)  ⇒p(x)=(x^3 −1)(x+x^9 )+1  p(x)>0,for x>1  if x∈[0,1[  1−x>0  x^4 −x^9 ≤x^4 −x^5 =x^4 (1−x)>0  ⇒p(x)>0  ⇒∀x∈R  p(x)>0
letp(x)=x12x9+x4x+1ifx<0x9>0,x>0p(x)1p(x)>0x>0x12x9=x9(x31)x4x=x(x31)p(x)=(x31)(x+x9)+1p(x)>0,forx>1ifx[0,1[1x>0x4x9x4x5=x4(1x)>0p(x)>0xRp(x)>0

Leave a Reply

Your email address will not be published. Required fields are marked *