Menu Close

The-LCM-of-two-numbers-is-272-and-one-of-them-is-16-Find-a-Their-second-common-multiple-b-The-other-number-




Question Number 8827 by tawakalitu last updated on 30/Oct/16
The LCM of two numbers is 272 and one of  them is 16. Find  (a) Their second common multiple  (b) The other number
$$\mathrm{The}\:\mathrm{LCM}\:\mathrm{of}\:\mathrm{two}\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{272}\:\mathrm{and}\:\mathrm{one}\:\mathrm{of} \\ $$$$\mathrm{them}\:\mathrm{is}\:\mathrm{16}.\:\mathrm{Find} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Their}\:\mathrm{second}\:\mathrm{common}\:\mathrm{multiple} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{The}\:\mathrm{other}\:\mathrm{number} \\ $$
Commented by tawakalitu last updated on 31/Oct/16
i have solve this one too using your approach  thanks so much. God bless you
$$\mathrm{i}\:\mathrm{have}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{one}\:\mathrm{too}\:\mathrm{using}\:\mathrm{your}\:\mathrm{approach} \\ $$$$\mathrm{thanks}\:\mathrm{so}\:\mathrm{much}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$
Answered by Rasheed Soomro last updated on 31/Oct/16
The 2nd common multiple=LCM×2=272×2=544  If A and B are two numbers                            A×B=LCM×GCD  A=16, LCM=272, GCD=G(say),B=?                           16×B=272×G                                    B=17G (general answer)  For G=1,2,3,...B=17,34,51,68,...
$$\mathrm{The}\:\mathrm{2nd}\:\mathrm{common}\:\mathrm{multiple}=\mathrm{LCM}×\mathrm{2}=\mathrm{272}×\mathrm{2}=\mathrm{544} \\ $$$$\mathrm{If}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{two}\:\mathrm{numbers}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{A}×\mathrm{B}=\mathrm{LCM}×\mathrm{GCD} \\ $$$$\mathrm{A}=\mathrm{16},\:\mathrm{LCM}=\mathrm{272},\:\mathrm{GCD}=\mathrm{G}\left(\mathrm{say}\right),\mathrm{B}=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{16}×\mathrm{B}=\mathrm{272}×\mathrm{G} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{B}=\mathrm{17G}\:\left(\mathrm{general}\:\mathrm{answer}\right) \\ $$$$\mathrm{For}\:\mathrm{G}=\mathrm{1},\mathrm{2},\mathrm{3},…\mathrm{B}=\mathrm{17},\mathrm{34},\mathrm{51},\mathrm{68},… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *