Menu Close

The-maximum-value-of-y-x-3-2-x-2-2-2-x-2-x-2-1-2-is-A-10-C-4-B-2-5-D-10-




Question Number 143997 by liberty last updated on 20/Jun/21
 The maximum value of   y = (√((x−3)^2 +(x^2 −2)^2 ))−(√(x^2 +(x^2 −1)^2 ))  is (A) (√(10))       (C) 4         (B) 2(√5)     (D) 10
$$\:{The}\:{maximum}\:{value}\:{of}\: \\ $$$${y}\:=\:\sqrt{\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\left({x}^{\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} }−\sqrt{{x}^{\mathrm{2}} +\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${is}\:\left({A}\right)\:\sqrt{\mathrm{10}}\:\:\:\:\:\:\:\left({C}\right)\:\mathrm{4}\: \\ $$$$\:\:\:\:\:\:\left({B}\right)\:\mathrm{2}\sqrt{\mathrm{5}}\:\:\:\:\:\left({D}\right)\:\mathrm{10}\: \\ $$
Answered by mitica last updated on 20/Jun/21
(A) (√(10))
$$\left({A}\right)\:\sqrt{\mathrm{10}} \\ $$
Answered by mitica last updated on 20/Jun/21
A(x,x^2 );B(3,2);C(0,1)  y=AB−AC≤BC⇒y≤(√((3−0)^2 +(2−1)^2 ))=(√(10))  y=(√(10))⇔((x^2 −1)/(x−0))=((2−1)/(3−0))⇔3x^2 −x−3=0⇔x=((1±(√(37)))/6)
$${A}\left({x},{x}^{\mathrm{2}} \right);{B}\left(\mathrm{3},\mathrm{2}\right);{C}\left(\mathrm{0},\mathrm{1}\right) \\ $$$${y}={AB}−{AC}\leqslant{BC}\Rightarrow{y}\leqslant\sqrt{\left(\mathrm{3}−\mathrm{0}\right)^{\mathrm{2}} +\left(\mathrm{2}−\mathrm{1}\right)^{\mathrm{2}} }=\sqrt{\mathrm{10}} \\ $$$${y}=\sqrt{\mathrm{10}}\Leftrightarrow\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}−\mathrm{0}}=\frac{\mathrm{2}−\mathrm{1}}{\mathrm{3}−\mathrm{0}}\Leftrightarrow\mathrm{3}{x}^{\mathrm{2}} −{x}−\mathrm{3}=\mathrm{0}\Leftrightarrow{x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{37}}}{\mathrm{6}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *