Menu Close

The-medians-of-a-triangle-are-m-1-m-2-m-3-Find-the-length-of-each-sides-the-triangle-




Question Number 2458 by alib last updated on 20/Nov/15
The medians of a triangle  are m_1 , m_2 , m_3 .  Find the length of each sides   the triangle.
Themediansofatrianglearem1,m2,m3.Findthelengthofeachsidesthetriangle.
Answered by prakash jain last updated on 20/Nov/15
m_1 =(1/2)(√(2c^2 +2b^2 −a^2 ))⇒a^2 =−4m_1 ^2 +2c^2 +2b^2     (1)  m_2 =(1/2)(√(2a^2 +2c^2 −b^2 )) ⇒b^2 =−4m_2 ^2 +2a^2 +2c^2    (2)  m_3 =(1/2)(√(2a^2 +2b^2 −c^2 ))⇒c^2 =−4m_3 ^2 +2a^2 +2b^2      (3)  (2)+(3)  b^2 +c^2 =−4(m_2 ^2 +m_3 ^2 )+2(b^2 +c^2 )+4a^2   (b^2 +c^2 )=4[(m_3 ^2 +m_2 ^2 )−a^2 ]  subtitute in (1)  a^2 =−4m_1 ^2 +8(m_3 ^2 +m_2 ^2 )−8a^2   9a^2 =8m_3 ^2 +8m_2 ^2 −4m_1 ^2   a=(2/3)(√(2m_3 ^2 +2m_2 ^2 −m_1 ^2 ))  similarly  b=(2/3)(√(2m_3 ^2 +2m_1 ^2 −m_2 ^2 ))  c=(2/3)(√(2m_1 ^2 +2m_2 ^2 −m_3 ^2 ))
m1=122c2+2b2a2a2=4m12+2c2+2b2(1)m2=122a2+2c2b2b2=4m22+2a2+2c2(2)m3=122a2+2b2c2c2=4m32+2a2+2b2(3)(2)+(3)b2+c2=4(m22+m32)+2(b2+c2)+4a2(b2+c2)=4[(m32+m22)a2]subtitutein(1)a2=4m12+8(m32+m22)8a29a2=8m32+8m224m12a=232m32+2m22m12similarlyb=232m32+2m12m22c=232m12+2m22m32

Leave a Reply

Your email address will not be published. Required fields are marked *