Menu Close

The-number-of-common-roots-of-the-equations-x-5-x-3-x-2-1-0-and-x-4-1-0-is-




Question Number 140271 by EnterUsername last updated on 06/May/21
The number of common roots of the equations  x^5 −x^3 +x^2 −1=0 and x^4 −1=0 is ____.
Thenumberofcommonrootsoftheequationsx5x3+x21=0andx41=0is____.
Answered by liberty last updated on 06/May/21
(1)(x^2 −1)(x^2 +1)=0  ⇒(x+1)(x−1)(x+i)(x−i)=0  ⇒x=±1 , x=±i  (2)(x−1)(x^4 +x^3 +x+1)=0  ⇒(x−1)(x+1)(x^3 +1)=0  ⇒(x−1)(x+1)(x+1)(x^2 −x+1)=0  ⇒(x−1)(x+1)^2 ((x−(1/2))^2 +(3/4))=0  ⇒x =±1; x=±((√3)/2)i +(1/2)  the number of common roots is 2
(1)(x21)(x2+1)=0(x+1)(x1)(x+i)(xi)=0x=±1,x=±i(2)(x1)(x4+x3+x+1)=0(x1)(x+1)(x3+1)=0(x1)(x+1)(x+1)(x2x+1)=0(x1)(x+1)2((x12)2+34)=0x=±1;x=±32i+12thenumberofcommonrootsis2
Commented by EnterUsername last updated on 06/May/21
Thank you!
Thankyou!

Leave a Reply

Your email address will not be published. Required fields are marked *