Menu Close

The-parallelogram-ABCD-has-AB-6-AC-7-amp-d-D-AC-2-Find-d-D-AB-




Question Number 144074 by bobhans last updated on 21/Jun/21
 The parallelogram ABCD has  ∣∣AB∣∣ =6, ∣∣AC∣∣=7 & d(D,AC)=2  Find d(D,AB).
$$\:\mathrm{The}\:\mathrm{parallelogram}\:\mathrm{ABCD}\:\mathrm{has} \\ $$$$\mid\mid\mathrm{AB}\mid\mid\:=\mathrm{6},\:\mid\mid\mathrm{AC}\mid\mid=\mathrm{7}\:\&\:\mathrm{d}\left(\mathrm{D},\mathrm{AC}\right)=\mathrm{2} \\ $$$$\mathrm{Find}\:\mathrm{d}\left(\mathrm{D},\mathrm{AB}\right). \\ $$
Answered by liberty last updated on 21/Jun/21
Area_(ΔADC)  = ((2×7)/2)=7  Area_(□ABCD)  = 2×[ area_(ΔADC)  ]= 14  Area_(□ABCD)  = AB×DF = 14  ∣∣DF∣∣ = ((14)/6) = (7/3).
$$\mathrm{Area}_{\Delta\mathrm{ADC}} \:=\:\frac{\mathrm{2}×\mathrm{7}}{\mathrm{2}}=\mathrm{7} \\ $$$$\mathrm{Area}_{\Box\mathrm{ABCD}} \:=\:\mathrm{2}×\left[\:\mathrm{area}_{\Delta\mathrm{ADC}} \:\right]=\:\mathrm{14} \\ $$$$\mathrm{Area}_{\Box\mathrm{ABCD}} \:=\:\mathrm{AB}×\mathrm{DF}\:=\:\mathrm{14} \\ $$$$\mid\mid\mathrm{DF}\mid\mid\:=\:\frac{\mathrm{14}}{\mathrm{6}}\:=\:\frac{\mathrm{7}}{\mathrm{3}}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *