Menu Close

The-perimeter-of-an-isosceles-right-angled-triangle-is-2p-Find-out-the-area-of-the-triangle-




Question Number 99 by sagarwal last updated on 25/Jan/15
The perimeter of an isosceles right−angled  triangle is 2p. Find out the area of the triangle.
Theperimeterofanisoscelesrightangledtriangleis2p.Findouttheareaofthetriangle.
Answered by 123456 last updated on 14/Dec/14
lets ΔABC be a triangle with lenght a,b,c  by it isosceles mean that two or more angle and lenght are equal  since its right angle and isosceles, we have a angle 90°, then the other will be 45°  then we gets seting a,b catetes  a=b  a^2 +b^2 =2a^2 =c^2   the perimet is  a+b+c=2a+c=2p  then the area is  A=((ab)/2)=(a^2 /2)  solving  2a^2 −c^2 =0  2a+c=2p  c=2(p−a)  c^2 =4p^2 −8ap+4a^2   −2a^2 +8ap−4p^2 =0  2a^2 −8ap+4p^2 =0  Δ=(−8p)^2 −4(2)(4p^2 )  =64p^2 −16p^2 =48p^2   a=(((8±2(√(12)))p)/4)=(2±(√(12)))p  c=2p−2a  we gets  a=(2+(√(12)))p  c=2((√(12))−1)p  A=(((2+(√(12)))^2 p^2 )/2)=(((16+4(√(12)))p^2 )/2)=(8+2(√(12)))p^2
letsΔABCbeatrianglewithlenghta,b,cbyitisoscelesmeanthattwoormoreangleandlenghtareequalsinceitsrightangleandisosceles,wehaveaangle90°,thentheotherwillbe45°thenwegetssetinga,bcatetesa=ba2+b2=2a2=c2theperimetisa+b+c=2a+c=2pthentheareaisA=ab2=a22solving2a2c2=02a+c=2pc=2(pa)c2=4p28ap+4a22a2+8ap4p2=02a28ap+4p2=0Δ=(8p)24(2)(4p2)=64p216p2=48p2a=(8±212)p4=(2±12)pc=2p2awegetsa=(2+12)pc=2(121)pA=(2+12)2p22=(16+412)p22=(8+212)p2