Menu Close

The-possible-value-of-p-for-which-graph-of-the-function-f-x-2p-2-3ptan-x-tan-2-x-1-does-not-lie-below-x-axis-for-all-x-2-2-is-a-0-b-4-c-3-d-8-




Question Number 77024 by Sathvik last updated on 02/Jan/20
The possible value of p for which   graph of the function f(x)=2p^2 −  3ptan x+tan^2 x+1 does not lie below   x-axis for all x∈(((−Π)/2),(Π/2)) is  (a)0      (b)4        (c)3        (d)8
Thepossiblevalueofpforwhichgraphofthefunctionf(x)=2p23ptanx+tan2x+1doesnotliebelowxaxisforallx(Π2,Π2)is(a)0(b)4(c)3(d)8
Answered by MJS last updated on 03/Jan/20
well, just test them all...  I found −2≤p≤2  ⇒ (a) is the right answer  f(x): y=tan^2  x −3ptan x +2p^2 +1  f′(x): y=2tan^3  x −3ptan^2  x +2tan x −3p=            =(tan^2  x +1)(2tan x −3p)  ⇒ tan x =(3/2)p  insert in f(x)  y=1−(p^2 /4)=0 ⇒ p=±2  ⇒ −2≤p≤2
well,justtestthemallIfound2p2(a)istherightanswerf(x):y=tan2x3ptanx+2p2+1f(x):y=2tan3x3ptan2x+2tanx3p==(tan2x+1)(2tanx3p)tanx=32pinsertinf(x)y=1p24=0p=±22p2

Leave a Reply

Your email address will not be published. Required fields are marked *