Menu Close

the-product-of-3-integer-x-y-z-is-192-z-4-and-t-is-equal-to-average-of-x-and-y-what-is-the-minimum-posible-value-of-t-




Question Number 76872 by john santu last updated on 31/Dec/19
the product of 3 integer x,y,z is 192  . z = 4 and t is equal to average?  of x and y . what is the minimum   posible value of t?
$${the}\:{product}\:{of}\:\mathrm{3}\:{integer}\:{x},{y},{z}\:{is}\:\mathrm{192} \\ $$$$.\:{z}\:=\:\mathrm{4}\:{and}\:{t}\:{is}\:{equal}\:{to}\:{average}? \\ $$$${of}\:{x}\:{and}\:{y}\:.\:{what}\:{is}\:{the}\:{minimum}\: \\ $$$${posible}\:{value}\:{of}\:{t}? \\ $$
Commented by mr W last updated on 31/Dec/19
t=((x+y)/2)=(1/2)(x+((48)/x))  t_(min) =t(−1)=−((49)/2)
$${t}=\frac{{x}+{y}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\left({x}+\frac{\mathrm{48}}{{x}}\right) \\ $$$${t}_{{min}} ={t}\left(−\mathrm{1}\right)=−\frac{\mathrm{49}}{\mathrm{2}} \\ $$
Commented by jagoll last updated on 31/Dec/19
this problem applies  to negative  integer sir?
$${this}\:{problem}\:{applies}\:\:{to}\:{negative} \\ $$$${integer}\:{sir}? \\ $$
Commented by mr W last updated on 31/Dec/19
if only positive integers are allowed,  then t_(min) =t(6)=t(8)=(1/2)(6+((48)/6))=7
$${if}\:{only}\:{positive}\:{integers}\:{are}\:{allowed}, \\ $$$${then}\:{t}_{{min}} ={t}\left(\mathrm{6}\right)={t}\left(\mathrm{8}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{6}+\frac{\mathrm{48}}{\mathrm{6}}\right)=\mathrm{7} \\ $$
Commented by john santu last updated on 31/Dec/19
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *