Menu Close

The-result-log-xy-log-x-log-y-is-not-always-true-Give-a-pair-of-values-of-x-and-y-such-that-the-result-will-not-hold-




Question Number 5569 by Rasheed Soomro last updated on 20/May/16
The result “log xy=log x+log y” is not  always true! Give a pair of values of  x and y such that the result will not hold.
Theresultlogxy=logx+logyisnotalwaystrue!Giveapairofvaluesofxandysuchthattheresultwillnothold.
Commented by Yozzii last updated on 20/May/16
(x,y)=(−1,2)  ⇒complex result of logxy and logx with  infinitely many answers.  Since cosnπ=(−1)^n   n∈Z  ⇒cos(2n−1)π=(−1)^(2n−1) =(−1)^(2n) ×(−1)=−1  ∴For a>0, ln(−a)=ln(ae^((2n−1)πi) )  ln(−a)=lna+(2n−1)πi   n∈Z    logxy=log(−2)=(1/(ln10))(ln2+(2n−1)πi)  n∈Z  log(−1)=(1/(ln10))(ln1+(2j−1)πi)  j∈Z  logx=log(−1)=(((2j−1)πi)/(ln10))  logy=((ln2)/(ln10))  ∴logx+logy=(1/(ln10))(ln2+(2j−1)πi)  Let j=2⇒logx+logy=(1/(ln10))(ln2+3πi)  Let n=1⇒logxy=(1/(ln10))(ln2+πi)  ∴logxy=logx+logy  ⇒(1/(ln10))(ln2+πi)=(1/(ln10))(ln2+3πi)  ⇒1=3 which is impossible.
(x,y)=(1,2)complexresultoflogxyandlogxwithinfinitelymanyanswers.Sincecosnπ=(1)nnZcos(2n1)π=(1)2n1=(1)2n×(1)=1Fora>0,ln(a)=ln(ae(2n1)πi)ln(a)=lna+(2n1)πinZlogxy=log(2)=1ln10(ln2+(2n1)πi)nZlog(1)=1ln10(ln1+(2j1)πi)jZlogx=log(1)=(2j1)πiln10logy=ln2ln10logx+logy=1ln10(ln2+(2j1)πi)Letj=2logx+logy=1ln10(ln2+3πi)Letn=1logxy=1ln10(ln2+πi)logxy=logx+logy1ln10(ln2+πi)=1ln10(ln2+3πi)1=3whichisimpossible.
Commented by Rasheed Soomro last updated on 20/May/16
TH𝛂NKS!
THαNKS!

Leave a Reply

Your email address will not be published. Required fields are marked *