Menu Close

the-sides-of-a-triangle-are-5-7-10-cm-1-find-the-largest-equilateral-triangle-which-circumscribes-the-given-triangle-2-find-the-smallest-equilateral-triangle-which-inscribes-the-given-triangle-




Question Number 136293 by mr W last updated on 20/Mar/21
the sides of a triangle are 5,7,10 cm.  1) find the largest equilateral triangle  which circumscribes the given triangle.  2) find the smallest equilateral triangle  which inscribes the given triangle.
$${the}\:{sides}\:{of}\:{a}\:{triangle}\:{are}\:\mathrm{5},\mathrm{7},\mathrm{10}\:{cm}. \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{largest}\:{equilateral}\:{triangle} \\ $$$${which}\:{circumscribes}\:{the}\:{given}\:{triangle}. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{smallest}\:{equilateral}\:{triangle} \\ $$$${which}\:{inscribes}\:{the}\:{given}\:{triangle}. \\ $$
Commented by mr W last updated on 20/Mar/21
Q1:  s_(max) =2(√(29+4(√(22))))≈13.822 cm  Q2:  s_(min) =((4(29−4(√(22)))(√(22(29+4(√(22))))))/( 489))≈2.715 cm
$${Q}\mathrm{1}: \\ $$$${s}_{{max}} =\mathrm{2}\sqrt{\mathrm{29}+\mathrm{4}\sqrt{\mathrm{22}}}\approx\mathrm{13}.\mathrm{822}\:{cm} \\ $$$${Q}\mathrm{2}: \\ $$$${s}_{{min}} =\frac{\mathrm{4}\left(\mathrm{29}−\mathrm{4}\sqrt{\mathrm{22}}\right)\sqrt{\mathrm{22}\left(\mathrm{29}+\mathrm{4}\sqrt{\mathrm{22}}\right)}}{\:\mathrm{489}}\approx\mathrm{2}.\mathrm{715}\:{cm} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *