The-sides-of-a-triangle-are-x-cm-x-4-cm-x-8-cm-respectively-if-the-cosine-o-the-largest-is-1-5-calculate-the-angles-of-triangle- Tinku Tara June 3, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 7142 by Tawakalitu. last updated on 13/Aug/16 Thesidesofatrianglearexcm,(x−4)cm,(x−8)cmrespectively.ifthecosineothelargestis15,calculatetheanglesoftriangle. Answered by Rasheed Soomro last updated on 13/Aug/16 ∵x,x−4,x−8>0[measuresofthesidesmustbepositive]∴x>8andit′sthelargest.Lettheoppositeangletothelargestside(whosemeasureisx)isα.Accordingtocosinelaw:x2=(x−4)2+(x−8)2−2(x−4)(x−8)cosαx2=(x−4)2+(x−8)2−2(x−4)(x−8)(15)[∵cosα=15]5x2=5x2−40x+80+5x2−80x+320−2x2+24x−64−40x+80+5x2−80x+320−2x2+24x−64=03x2−96x+336=0x2−32x+112=0x=32±1024−4482=32±5762=32±242=16±12x=28∣x=4x=4isdiscardablesincex>8[x=4makesthesidesoftriangle0andnegative]So,x=28,x−4=24andx=20I−ethesidesofthetriangleare28,24and20Letα,βandγareoppsiteanglesofthesideshavingmeasures28,24and20respectively.cosα=202+242−2822×20×24=15⇒α=cos−115≈78.46°cosβ=202+282−2422×20×28=1935⇒β=cos−11935≈57.12°cosβ=242+282−2022×24×28=57⇒β=cos−157≈44.42° Commented by Tawakalitu. last updated on 13/Aug/16 Thankyousomuchsir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-7139Next Next post: Question-7145 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.