Menu Close

The-sides-of-a-triangle-are-x-cm-x-4-cm-x-8-cm-respectively-if-the-cosine-o-the-largest-is-1-5-calculate-the-angles-of-triangle-




Question Number 7142 by Tawakalitu. last updated on 13/Aug/16
The sides of a triangle are x cm, (x − 4) cm, (x − 8)cm  respectively . if the cosine o the largest is (1/5) ,   calculate the angles of  triangle.
Thesidesofatrianglearexcm,(x4)cm,(x8)cmrespectively.ifthecosineothelargestis15,calculatetheanglesoftriangle.
Answered by Rasheed Soomro last updated on 13/Aug/16
∵ x , x−4 , x−8 >0   [measures of the sides must be  positive]  ∴ x >8 and it′s the largest.  Let the  opposite angle to the largest side(whose  measure is x) is α.According to cosine law:             x^2 =(x−4)^2 +(x−8)^2 −2(x−4)(x−8)cos α             x^2 =(x−4)^2 +(x−8)^2 −2(x−4)(x−8)((1/5))  [∵cos α=(1/5)]         5x^2 =5x^2 −40x+80+5x^2 −80x+320−2x^2 +24x−64         −40x+80+5x^2 −80x+320−2x^2 +24x−64=0         3x^2 −96x+336=0          x^2 −32x+112=0           x=((32±(√(1024−448)))/2)=((32±(√(576)))/2)=((32±24)/2)=16±12         x=28 ∣  x=4  x=4 is discardable since x>8 [x=4 makes the sides  of triangle 0 and negative]  So,  x=28 , x−4=24 and x=20  I-e the sides of the triangle are 28,24 and 20    Let  α,β  and  γ  are oppsite angles  of  the sides having  measures  28,24  and 20 respectively.              cos α=((20^2 +24^2 −28^2 )/(2×20×24))=(1/5)⇒α=cos^(−1) (1/5)≈78.46°             cos β=((20^2 +28^2 −24^2 )/(2×20×28))=((19)/(35))⇒β=cos^(−1) ((19)/(35))≈57.12°             cos β=((24^2 +28^2 −20^2 )/(2×24×28))=(5/7)⇒β=cos^(−1) (5/7)≈44.42°
x,x4,x8>0[measuresofthesidesmustbepositive]x>8anditsthelargest.Lettheoppositeangletothelargestside(whosemeasureisx)isα.Accordingtocosinelaw:x2=(x4)2+(x8)22(x4)(x8)cosαx2=(x4)2+(x8)22(x4)(x8)(15)[cosα=15]5x2=5x240x+80+5x280x+3202x2+24x6440x+80+5x280x+3202x2+24x64=03x296x+336=0x232x+112=0x=32±10244482=32±5762=32±242=16±12x=28x=4x=4isdiscardablesincex>8[x=4makesthesidesoftriangle0andnegative]So,x=28,x4=24andx=20Iethesidesofthetriangleare28,24and20Letα,βandγareoppsiteanglesofthesideshavingmeasures28,24and20respectively.cosα=202+2422822×20×24=15α=cos11578.46°cosβ=202+2822422×20×28=1935β=cos1193557.12°cosβ=242+2822022×24×28=57β=cos15744.42°
Commented by Tawakalitu. last updated on 13/Aug/16
Thank you so much sir.
Thankyousomuchsir.

Leave a Reply

Your email address will not be published. Required fields are marked *