Menu Close

The-square-ABCD-has-side-equal-to-1-and-the-distance-AP-is-1-8-Calculate-the-side-of-the-equilateral-triangle-PMN-inscribed-in-the-square-




Question Number 68831 by Maclaurin Stickker last updated on 15/Sep/19
The square ABCD has side equal to 1  and the distance AP  is  (1/8).  Calculate the side of the equilateral  triangle PMN inscribed in the square.
ThesquareABCDhassideequalto1andthedistanceAPis18.CalculatethesideoftheequilateraltrianglePMNinscribedinthesquare.
Commented by Maclaurin Stickker last updated on 15/Sep/19
Commented by ajfour last updated on 16/Sep/19
let AP =(1/8)=a  triangle side s, side of square 1.  scos α=1  DP = scos ((π/6)−α)=1−a  ⇒ ((√3)/2)+((s/2))sin α=1−a  s(√(1−(1/s^2 )))=(7/4)−(√3)  s^2 −1=((7/4)−(√3))^2     s^2 =((49)/(16))+3−((7(√3))/2)+1   s=((√(113−56(√3)))/4) .
letAP=18=atrianglesides,sideofsquare1.scosα=1DP=scos(π6α)=1a32+(s2)sinα=1as11s2=743s21=(743)2s2=4916+3732+1s=1135634.
Commented by Maclaurin Stickker last updated on 16/Sep/19
Wow. I loved how you used trigonometry.
Wow.Ilovedhowyouusedtrigonometry.
Answered by MJS last updated on 16/Sep/19
P= ((0),((1/8)) )  M= ((1),(y) )  N= ((x),(1) )  ∣PM∣^2 =∣PN∣^2 =∣MN∣^2   y^2 −(1/4)y+((65)/(64))=x^2 +((49)/(64))=x^2 +y^2 −2x−2y+2    y^2 −(1/4)y+((65)/(64))=x^2 +y^2 −2x−2y+2  ⇒ y=(4/7)x^2 −(8/7)x+(9/(16))    y^2 −(1/4)y+((65)/(64))=x^2 +((49)/(64))  ⇒  x^4 −4x^3 +((79)/(32))x^2 −((49)/(16))x+((5341)/(4096))=0  (x^2 +((49)/(64)))(x^2 −4x+((109)/(64)))=0  x∈[0; 1] ⇒ x=2−((7(√3))/8) ⇒ y=((15)/8)−(√3)  ⇒ side s=((√(113−56(√3)))/4)
P=(018)M=(1y)N=(x1)PM2=∣PN2=∣MN2y214y+6564=x2+4964=x2+y22x2y+2y214y+6564=x2+y22x2y+2y=47x287x+916y214y+6564=x2+4964x44x3+7932x24916x+53414096=0(x2+4964)(x24x+10964)=0x[0;1]x=2738y=1583sides=1135634
Commented by Maclaurin Stickker last updated on 16/Sep/19
Your answer is correct.
Youransweriscorrect.
Commented by Maclaurin Stickker last updated on 16/Sep/19
How did you do that third equation?
Howdidyoudothatthirdequation?
Commented by Maclaurin Stickker last updated on 16/Sep/19
Thank you!
Thankyou!
Commented by MJS last updated on 16/Sep/19
x^4 −4x^3 +((79)/(32))x^2 −((49)/(16))x+((5341)/(4096))=0  x=t+1  t^4 −((113)/(32))t^2 −((49)/8)t−((9379)/(4096))=0  (t^2 −αt−β)(t^2 +αt−γ)=0  ⇒  α^2 +β+γ−((113)/(32))=0∧αβ−αγ−((49)/8)=0∧βγ+((9379)/(4096))=0  ⇒  α=2∧β=((83)/(64))∧γ=−((113)/(64))  (t^2 −2t−((83)/(64)))(t^2 +2t+((113)/(64)))=0  t=x−1  (x^2 −4x+((109)/(64)))(x^2 +((49)/(64)))=0
x44x3+7932x24916x+53414096=0x=t+1t411332t2498t93794096=0(t2αtβ)(t2+αtγ)=0α2+β+γ11332=0αβαγ498=0βγ+93794096=0α=2β=8364γ=11364(t22t8364)(t2+2t+11364)=0t=x1(x24x+10964)(x2+4964)=0

Leave a Reply

Your email address will not be published. Required fields are marked *