Menu Close

the-sum-to-infinity-of-a-Geometric-series-is-S-the-sum-to-infinty-of-the-squares-of-the-terms-of-the-series-is-2S-the-sum-to-infinity-of-the-cubes-of-the-terms-of-the-series-is-64-13-S-find-the-




Question Number 78493 by Rio Michael last updated on 18/Jan/20
the sum to infinity of a Geometric series is S  the sum to infinty of the squares of the terms  of the series is 2S  the sum to infinity of the cubes of the terms  of the series is ((64)/(13))S.  find the value of S and write iut the first  3 terms if the series.
thesumtoinfinityofaGeometricseriesisSthesumtoinfintyofthesquaresofthetermsoftheseriesis2Sthesumtoinfinityofthecubesofthetermsoftheseriesis6413S.findthevalueofSandwriteiutthefirst3termsiftheseries.
Answered by mr W last updated on 18/Jan/20
S=(a_1 /(1−q))   ...(i)  2S=(a_1 ^2 /(1−q^2 ))>0   ...(ii)  ((64)/(13))S=(a_1 ^3 /(1−q^3 ))   ...(iii)  a_1 =(1−q)S  2S=(a_1 ^2 /(1−q^2 ))=(((1−q)^2 S^2 )/(1−q^2 ))=((1−q)/(1+q))S^2   2=((1−q)/(1+q))S  ⇒q=((S−2)/(S+2))=1−(4/(S+2))  ⇒a_1 =((4S)/(S+2))    ((64)/(13))S=(a_1 ^3 /(1−q^3 ))=(((((4S)/(S+2)))^3 )/(1−(((S−2)/(S+2)))^3 ))  ((64)/(13))S=((4^3 S^3 )/((S+2)^3 −(S−2)^3 ))=((64S^3 )/(2(6S^2 +8)))  (1/(13))=(S^2 /(2(6S^2 +8)))  S^2 =16  ⇒S=4  ⇒q=((S−2)/(S+2))=((4−2)/(4+2))=(1/3)  ⇒a_1 =((4S)/(S+2))=((16)/6)=(8/3)  ⇒a_2 =(8/3)×(1/3)=(8/9)  ⇒a_3 =(8/9)×(1/3)=(8/(27))
S=a11q(i)2S=a121q2>0(ii)6413S=a131q3(iii)a1=(1q)S2S=a121q2=(1q)2S21q2=1q1+qS22=1q1+qSq=S2S+2=14S+2a1=4SS+26413S=a131q3=(4SS+2)31(S2S+2)36413S=43S3(S+2)3(S2)3=64S32(6S2+8)113=S22(6S2+8)S2=16S=4q=S2S+2=424+2=13a1=4SS+2=166=83a2=83×13=89a3=89×13=827
Commented by peter frank last updated on 18/Jan/20
thank you
thankyou
Answered by john santu last updated on 18/Jan/20
a+ar+ar^2 +ar^3 +...=(a/(1−r))=S ⇒a=S(1−r)  a^2 +a^2 r^2 +a^2 r^4 +a^2 r^6 +...=(a^2 /(1−r^2 )) =2S  (a/(1+r))×(a/(1−r))=2S  (a/(1+r))=2 ⇒a=2+2r ⇒S−Sr=2+2r  a^3 (1+r^3 +r^6 +r^9 +...)=((64)/(13))S  (a^3 /(1−r^3 ))=((64)/(13))S  ⇒(a/((1−r)))×(a^2 /((1+r+r^2 )))=((64)/(13))S  13a^2 =64(1+r+r^2 )  13×4(r^2 +2r+1)=64(r^2 +r+1)  13r^2 +26r+13= 16r^2 +16r+16  3r^2 −10r+3=0⇒(3r−1)(r−3)=0  r=3 (no solution)  r=(1/3) ⇒ a=2+(2/3)=(8/3)  S= (((8/3))/(1−(1/3)))= 4
a+ar+ar2+ar3+=a1r=Sa=S(1r)a2+a2r2+a2r4+a2r6+=a21r2=2Sa1+r×a1r=2Sa1+r=2a=2+2rSSr=2+2ra3(1+r3+r6+r9+)=6413Sa31r3=6413Sa(1r)×a2(1+r+r2)=6413S13a2=64(1+r+r2)13×4(r2+2r+1)=64(r2+r+1)13r2+26r+13=16r2+16r+163r210r+3=0(3r1)(r3)=0r=3(nosolution)r=13a=2+23=83S=(8/3)1(1/3)=4
Commented by peter frank last updated on 18/Jan/20
thank you
thankyou
Commented by peter frank last updated on 18/Jan/20
please help Qn 77990
pleasehelpQn77990
Commented by Rio Michael last updated on 18/Jan/20
thank you sirs
thankyousirs

Leave a Reply

Your email address will not be published. Required fields are marked *