Menu Close

The-sums-of-the-first-n-terms-of-two-AP-s-are-in-the-ratio-3n-31-5n-3-Show-that-their-9-th-terms-are-equal-




Question Number 2619 by Rasheed Soomro last updated on 23/Nov/15
The sums of the first  n   terms of two AP ′s are  in the ratio  3n+31 :  5n−3 . Show that their 9^(th)  terms  are equal.
ThesumsofthefirstntermsoftwoAPsareintheratio3n+31:5n3.Showthattheir9thtermsareequal.
Commented by Yozzi last updated on 24/Nov/15
S_1 (n)=(n/2)(a_1 +l_1 )=((nc_1 )/2), S_2 (n)=(n/2)(a_2 +l_2 )=((nc_2 )/2)  ((S_1 (n))/(S_2 (n)))=((3n+31)/(5n−3))=(c_1 /c_2 ).  3c_2 n+31c_2 =5c_1 n−3c_1   n(3c_2 −5c_1 )=−3c_1 −31c_2   n=((3c_1 +31c_2 )/(5c_1 −3c_2 ))  n−1=((34c_2 −2c_1 )/(5c_1 −3c_2 ))  Δ=T_1 (9)−T_2 (9)=a_1 −a_2 +8(d_1 −d_2 )  l_1 =a_1 +(n−1)d_1 ⇒d_1 =((l_1 −a_1 )/(n−1))  δ=d_1 −d_2 =((l_1 −a_1 −l_2 +a_2 )/(n−1))  δ=(((l_1 +a_2 −a_1 −l_2 )(5c_1 −3c_2 ))/(34c_2 −2c_1 ))
S1(n)=n2(a1+l1)=nc12,S2(n)=n2(a2+l2)=nc22S1(n)S2(n)=3n+315n3=c1c2.3c2n+31c2=5c1n3c1n(3c25c1)=3c131c2n=3c1+31c25c13c2n1=34c22c15c13c2Δ=T1(9)T2(9)=a1a2+8(d1d2)l1=a1+(n1)d1d1=l1a1n1δ=d1d2=l1a1l2+a2n1δ=(l1+a2a1l2)(5c13c2)34c22c1
Answered by prakash jain last updated on 24/Nov/15
Let  2a_1 +(n−1)d_1 =(3n+31)k_1 , then  2a_2 +(n−1)d_2 =(5n−3)k_1   (2a_1 −d_1 )+nd_1 =3nk_1 +31k_1     ...(1)  If (1) is true for all n (coeffiient must be equal)  nd_1 =3nk_1 ⇒d_1 =3k_1   2a_1 −d_1 =31k_1 ⇒a_1 =17k_1   similarly  d_2 =5k_1   a_2 =k_1   9th term  a_1 +8d_1 =17k_1 +24k_1 =41k_1   a_2 +8d_2 =k_1 +40k_1 =41k_1   So 9th terms are equal.
Let2a1+(n1)d1=(3n+31)k1,then2a2+(n1)d2=(5n3)k1(2a1d1)+nd1=3nk1+31k1(1)If(1)istrueforalln(coeffiientmustbeequal)nd1=3nk1d1=3k12a1d1=31k1a1=17k1similarlyd2=5k1a2=k19thterma1+8d1=17k1+24k1=41k1a2+8d2=k1+40k1=41k1So9thtermsareequal.
Answered by Rasheed Soomro last updated on 24/Nov/15
Without repeating understood things  (((n/2)[2a_1 +(n−1)d_1 ])/((n/2)[2a_2 +(n−1)d_2 ]))=((3n+31)/(5n−3))    [Given]  a_1 +8d_(1 ) (T_9 )=a_2 +8d_2 (t_9 )         [Required]      (((n/2)[2a_1 +(n−1)d_1 ])/((n/2)[2a_2 +(n−1)d_2 ]))=((3n+31)/(5n−3))  Our goal: To achieve a_1 +8d_(1 ) in numerator  and a_2 +8d_2  in denominator because we want  to determine relation between T_9  and t_9  .  ⇒((2a_1 +(n−1)d_1 )/(2a_2 +(n−1)d_2 ))=((3n+31)/(5n−3))  ⇒((2[a_1 +(((n−1)/2))d_1 ])/(2[a_2 +(((n−1)/2))d_2 ]))=((3n+31)/(5n−3))  ⇒((a_1 +(((n−1)/2))d_1 )/(a_2 +(((n−1)/2))d_2 ))=((3n+31)/(5n−3))  We want 8 in place of ((n−1)/2)  ∴  ((n−1)/2)=8⇒n=17  ⇒((a_1 +8d_1 )/(a_2 +8d_2 ))=((3(17)+31)/(5(17)−3))=((82)/(82))=1  ∴ T_9 =t_9
Withoutrepeatingunderstoodthingsn2[2a1+(n1)d1]n2[2a2+(n1)d2]=3n+315n3[Given]a1+8d1(T9)=a2+8d2(t9)[Required]n2[2a1+(n1)d1]n2[2a2+(n1)d2]=3n+315n3Ourgoal:Toachievea1+8d1innumeratoranda2+8d2indenominatorbecausewewanttodeterminerelationbetweenT9andt9.2a1+(n1)d12a2+(n1)d2=3n+315n32[a1+(n12)d1]2[a2+(n12)d2]=3n+315n3a1+(n12)d1a2+(n12)d2=3n+315n3Wewant8inplaceofn12n12=8n=17a1+8d1a2+8d2=3(17)+315(17)3=8282=1T9=t9
Commented by prakash jain last updated on 24/Nov/15
This method is simpler.
Thismethodissimpler.

Leave a Reply

Your email address will not be published. Required fields are marked *