Menu Close

The-value-of-lim-x-0-1-cos-x-2-1-cos-x-




Question Number 143960 by bobhans last updated on 20/Jun/21
 The value of lim_(x→0)  ((√(1−cos x^2 ))/(1−cos x)) =?
$$\:\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}−\mathrm{cos}\:\mathrm{x}^{\mathrm{2}} }}{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}\:=? \\ $$
Answered by lapache last updated on 20/Jun/21
lim_(x→0) ((√(1−1+(x^4 /2) ))/(1−1+(x^2 /2)))=lim_(x→0) ((2(√(x^4 /2)))/x^2 )=(√2)
$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\frac{\sqrt{\mathrm{1}−\mathrm{1}+\frac{{x}^{\mathrm{4}} }{\mathrm{2}}\:}}{\mathrm{1}−\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}={li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\frac{\mathrm{2}\sqrt{\frac{{x}^{\mathrm{4}} }{\mathrm{2}}}}{{x}^{\mathrm{2}} }=\sqrt{\mathrm{2}} \\ $$
Answered by bramlexs22 last updated on 20/Jun/21
 lim_(x→0)  ((√(2sin^2 ((x^2 /2))))/(2sin^2 ((x/2)))) = ((√2)/2) lim_(x→0)  ((sin ((x^2 /2)))/(sin^2 ((x/2))))  = ((2(√2))/2). 1 = (√2)
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)}}{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}\:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)}{\mathrm{sin}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)} \\ $$$$=\:\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{2}}.\:\mathrm{1}\:=\:\sqrt{\mathrm{2}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *