Menu Close

the-vector-equations-of-two-lines-L-1-and-L-2-is-given-by-L-1-r-i-j-3k-i-j-k-L-2-r-2i-aj-6k-2i-j-3k-where-a-are-real-constants-given-that-L-1-and-L-2-intersect-find-a-




Question Number 75101 by Rio Michael last updated on 07/Dec/19
the vector equations of two lines L_1  and L_2  is given by   L_1 :r= i−j+3k + λ(i−j +k)  L_2  : r= 2i+aj + 6k + μ(2i + j + 3k)  where a,λ,μ are real constants.  given that L_1  and L_2  intersect find  a.  the value of the constant a.  b.  the position vector of the point of   intersection between L_1  and L_2   c. the cosine of the acute angle between L_1  and L_2   please help
thevectorequationsoftwolinesL1andL2isgivenbyL1:r=ij+3k+λ(ij+k)L2:r=2i+aj+6k+μ(2i+j+3k)wherea,λ,μarerealconstants.giventhatL1andL2intersectfinda.thevalueoftheconstanta.b.thepositionvectorofthepointofintersectionbetweenL1andL2c.thecosineoftheacuteanglebetweenL1andL2pleasehelp
Commented by Kunal12588 last updated on 07/Dec/19
are these your hw question class 12
aretheseyourhwquestionclass12
Commented by Rio Michael last updated on 07/Dec/19
haha no sir,my revision question for my  country′s A level examination,i wanna comfirm my  answers
hahanosir,myrevisionquestionformycountrysAlevelexamination,iwannacomfirmmyanswers
Answered by Kunal12588 last updated on 07/Dec/19
L_1  and L_2  intersect   ∴ shortest dist b/w  L_1 &L_2  = 0  ∴∣(((b_1 ^→ ×b_2 ^→ )∙(a_2 ^→ −a_1 ^→ ))/(∣b_1 ^→ ×b_2 ^→ ∣))∣=0  ⇒ determinant (((2−1),(a+1),(6−3)),((    1),(−1),(   1)),((    2),(   1),(   3)))=0  ⇒ determinant ((1,(a+1),3),(1,(−1),1),(2,(   1),3))=0  ⇒1(−3−1)−(a+1)(3−2)+3(1+2)=0  ⇒−4−a−1+9=0  ⇒a=4
L1andL2intersectshortestdistb/wL1&L2=0∴∣(b1×b2)(a2a1)b1×b2∣=0|21a+163111213|=0|1a+13111213|=01(31)(a+1)(32)+3(1+2)=04a1+9=0a=4
Commented by peter frank last updated on 07/Dec/19
thank you
thankyou
Answered by Kunal12588 last updated on 07/Dec/19
Another way  r of L_1 =r of L_2   (1+λ)i+(−1−λ)j+(3+λ)k=(2+2μ)i+(a+μ)j+(6+3μ)k  1+λ=2+2μ      −1−λ=a+μ          3+λ=6+3μ  ⇒λ−2μ=1       ⇒λ+μ=−1−a    ⇒λ−3μ=3  ⇒−2μ+3μ=1−3  ⇒μ=−2  ⇒λ+4=1⇒λ=−3  ⇒−2−3=−1−a  ⇒a=4
AnotherwayrofL1=rofL2(1+λ)i+(1λ)j+(3+λ)k=(2+2μ)i+(a+μ)j+(6+3μ)k1+λ=2+2μ1λ=a+μ3+λ=6+3μλ2μ=1λ+μ=1aλ3μ=32μ+3μ=13μ=2λ+4=1λ=323=1aa=4
Answered by Kunal12588 last updated on 07/Dec/19
r=i−j+3k+λ(i−j+k)  a^→ =i−j+3k−3(i−j+k)   {λ=−3 for intersection}  =(1−3)i−(1−3)j+(3−3)k  =−2i+2j
r=ij+3k+λ(ij+k)a=ij+3k3(ij+k){λ=3forintersection}=(13)i(13)j+(33)k=2i+2j
Commented by Rio Michael last updated on 07/Dec/19
thank you sir
thankyousir
Answered by Kunal12588 last updated on 07/Dec/19
angle between L_1 &L_2   cos θ = ∣((b_1 ^→ ∙b_2 ^→ )/(∣b_1 ^→ ∣∣b_2 ^→ ∣))∣=∣(((i−j+k)∙(2i+j+3k))/( (√(1+1+1))(√(4+1+9))))∣  ⇒cos θ =∣((2−1+3)/( (√3)(√(14))))∣=(4/( (√(42))))
anglebetweenL1&L2cosθ=b1b2b1∣∣b2∣=∣(ij+k)(2i+j+3k)1+1+14+1+9cosθ=∣21+3314∣=442
Commented by Rio Michael last updated on 07/Dec/19
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *