Menu Close

The-volume-of-a-sphere-is-increasing-at-the-constant-rate-of-10cm-3-sec-Calculate-the-rate-of-increase-of-the-surface-area-at-the-instant-when-the-radius-is-5cm-What-is-the-radius-of-the-sphere-whe




Question Number 141776 by 7770 last updated on 23/May/21
The volume of a sphere is increasing  at the constant rate of 10cm^3 /sec.  Calculate the rate of increase of the   surface area at the instant when the  radius is 5cm.What is the radius of the  sphere when the surface area is increasing  at 2cm^2 /sec.  Any step by step solution pls.
$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{volume}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{sphere}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{increasing}} \\ $$$$\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{constant}}\:\boldsymbol{\mathrm{rate}}\:\boldsymbol{\mathrm{of}}\:\mathrm{10}\boldsymbol{\mathrm{cm}}^{\mathrm{3}} /\boldsymbol{\mathrm{sec}}. \\ $$$$\boldsymbol{\mathrm{Calculate}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{rate}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{increase}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\: \\ $$$$\boldsymbol{\mathrm{surface}}\:\boldsymbol{\mathrm{area}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{instant}}\:\boldsymbol{\mathrm{when}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{radius}}\:\boldsymbol{\mathrm{is}}\:\mathrm{5}\boldsymbol{\mathrm{cm}}.\boldsymbol{\mathrm{What}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{radius}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{sphere}}\:\boldsymbol{\mathrm{when}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{surface}}\:\boldsymbol{\mathrm{area}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{increasing}} \\ $$$$\boldsymbol{\mathrm{at}}\:\mathrm{2}\boldsymbol{\mathrm{cm}}^{\mathrm{2}} /\boldsymbol{\mathrm{sec}}. \\ $$$$\boldsymbol{\mathrm{Any}}\:\boldsymbol{\mathrm{step}}\:\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{step}}\:\boldsymbol{\mathrm{solution}}\:\boldsymbol{\mathrm{pls}}. \\ $$
Answered by physicstutes last updated on 23/May/21
 V = (4/3)πr^3  ,   (dV/dt) = 4πr^2 (dr/dt)  10 = 4π(5)^2 (dr/dt) ⇒ (dr/dt) = ((10)/(25(4π)))  A = 4πr^2  ⇒ (dA/dt) = 8π(dr/dt)
$$\:{V}\:=\:\frac{\mathrm{4}}{\mathrm{3}}\pi{r}^{\mathrm{3}} \:,\:\:\:\frac{{dV}}{{dt}}\:=\:\mathrm{4}\pi{r}^{\mathrm{2}} \frac{{dr}}{{dt}} \\ $$$$\mathrm{10}\:=\:\mathrm{4}\pi\left(\mathrm{5}\right)^{\mathrm{2}} \frac{{dr}}{{dt}}\:\Rightarrow\:\frac{{dr}}{{dt}}\:=\:\frac{\mathrm{10}}{\mathrm{25}\left(\mathrm{4}\pi\right)} \\ $$$${A}\:=\:\mathrm{4}\pi{r}^{\mathrm{2}} \:\Rightarrow\:\frac{{dA}}{{dt}}\:=\:\mathrm{8}\pi\frac{{dr}}{{dt}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *