Menu Close

There-are-3-tangent-circumferences-inscribed-in-an-isosceles-right-triangle-Two-of-these-circumferences-have-radius-R-and-are-tangent-to-the-hypotenuse-and-to-the-two-cathetus-The-smaller-circumfere




Question Number 71819 by Maclaurin Stickker last updated on 20/Oct/19
There are 3 tangent circumferences  inscribed in an isosceles right triangle  Two of these circumferences have  radius R and are tangent to the   hypotenuse and to the two cathetus.  The smaller circumference has   radius r and is tangent to the two  cathetus. How can I find the radius  of the smaller circumference as a  function of R?  (I want a tip on how to solve the   problem).
Thereare3tangentcircumferencesinscribedinanisoscelesrighttriangleTwoofthesecircumferenceshaveradiusRandaretangenttothehypotenuseandtothetwocathetus.Thesmallercircumferencehasradiusrandistangenttothetwocathetus.HowcanIfindtheradiusofthesmallercircumferenceasafunctionofR?(Iwantatiponhowtosolvetheproblem).
Commented by mr W last updated on 20/Oct/19
Commented by mr W last updated on 20/Oct/19
is this what you mean?
isthiswhatyoumean?
Commented by Maclaurin Stickker last updated on 20/Oct/19
Yes! I′d like a tip on how to solve.
Yes!Idlikeatiponhowtosolve.
Answered by mr W last updated on 20/Oct/19
Commented by mr W last updated on 20/Oct/19
AB=(√2)r+(√((r+R)^2 −R^2 ))+R=(√2)r+(√(r(2R+r)))+R  tan 22.5°=((sin 45°)/(1+cos 45°))=(((√2)/2)/(1+((√2)/2)))=(√2)−1  DC=(R/(tan 22.5°))=(R/( (√2)−1))=((√2)+1)R  BC=R+((√2)+1)R=(2+(√2))R  AB=BC  (√2)r+(√(r(2R+r)))+R=(2+(√2))R  (√(r(2R+r)))=(1+(√2))R−(√2)r  r(2R+r)=(1+(√2))^2 R^2 +2r^2 −2(1+(√2))(√2)Rr  ⇒r^2 −2((√2)+3)Rr+(1+(√2))^2 R^2 =0  ⇒r=(3+(√2)−2(√(2+(√2))))R  ⇒r=((√(2+(√2)))−1)^2 R≈0.7187R
AB=2r+(r+R)2R2+R=2r+r(2R+r)+Rtan22.5°=sin45°1+cos45°=221+22=21DC=Rtan22.5°=R21=(2+1)RBC=R+(2+1)R=(2+2)RAB=BC2r+r(2R+r)+R=(2+2)Rr(2R+r)=(1+2)R2rr(2R+r)=(1+2)2R2+2r22(1+2)2Rrr22(2+3)Rr+(1+2)2R2=0r=(3+222+2)Rr=(2+21)2R0.7187R

Leave a Reply

Your email address will not be published. Required fields are marked *