Menu Close

There-are-4-children-in-the-team-Find-the-probability-that-three-are-girls-and-one-is-a-boy-




Question Number 139940 by mathdanisur last updated on 02/May/21
There are 4 children in the team.  Find the probability that three are  girls and one is a boy.
$${There}\:{are}\:\mathrm{4}\:{children}\:{in}\:{the}\:{team}. \\ $$$${Find}\:{the}\:{probability}\:{that}\:{three}\:{are} \\ $$$${girls}\:{and}\:{one}\:{is}\:{a}\:{boy}. \\ $$
Answered by mr W last updated on 02/May/21
children are different:  child 1, child 2, child 3, child 4.  total: 2^4 =16  one is boy (=three are girls): 4  ⇒p=(4/(16))=(1/4)
$${children}\:{are}\:{different}: \\ $$$${child}\:\mathrm{1},\:{child}\:\mathrm{2},\:{child}\:\mathrm{3},\:{child}\:\mathrm{4}. \\ $$$${total}:\:\mathrm{2}^{\mathrm{4}} =\mathrm{16} \\ $$$${one}\:{is}\:{boy}\:\left(={three}\:{are}\:{girls}\right):\:\mathrm{4} \\ $$$$\Rightarrow{p}=\frac{\mathrm{4}}{\mathrm{16}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by mr W last updated on 02/May/21
or  probability for each child to be girl: (1/2)  probability for n children to be girl:    ((4),(n) )((1/2))^4   n=3: p= ((4),(3) )((1/2))^4 =(4/(16))=(1/4)
$${or} \\ $$$${probability}\:{for}\:{each}\:{child}\:{to}\:{be}\:{girl}:\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${probability}\:{for}\:{n}\:{children}\:{to}\:{be}\:{girl}:\: \\ $$$$\begin{pmatrix}{\mathrm{4}}\\{{n}}\end{pmatrix}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{4}} \\ $$$${n}=\mathrm{3}:\:{p}=\begin{pmatrix}{\mathrm{4}}\\{\mathrm{3}}\end{pmatrix}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{4}} =\frac{\mathrm{4}}{\mathrm{16}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by mathdanisur last updated on 02/May/21
thanks Sir
$${thanks}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *