Menu Close

This-x-2-x-1-0-the-roots-of-the-equation-x-1-and-x-2-a-what-s-the-value-of-x-1-2-x-2-2-this-collection-of-smille-minimum-value-




Question Number 12543 by @ANTARES_VY last updated on 25/Apr/17
This  x^2 −𝛂x+𝛂−1=0.  the  roots  of  the  equation  x_1   and  x_2   a  what′s  the  value  of  x_1 ^2 +x_2 ^2   this  collection  of  smille(minimum)  value.
Thisx2αx+α1=0.therootsoftheequationx1andx2awhatsthevalueofx12+x22thiscollectionofsmille(minimum)value.
Answered by mrW1 last updated on 25/Apr/17
x^2 −αx+α−1=(x−x_1 )(x−x_2 )  x^2 −αx+α−1=x^x −(x_1 +x_2 )x+x_1 x_2   x_1 +x_2 =α  x_1 x_2 =α−1  x_1 ^2 +x_2 ^2 +2x_1 x_2 =α^2   x_1 ^2 +x_2 ^2 =α^2 −2α+2=(α−1)^2 +1≥1
x2αx+α1=(xx1)(xx2)x2αx+α1=xx(x1+x2)x+x1x2x1+x2=αx1x2=α1x12+x22+2x1x2=α2x12+x22=α22α+2=(α1)2+11
Commented by @ANTARES_VY last updated on 25/Apr/17
(𝛂−1)^2 +1≥1    ?????
(α1)2+11?????
Commented by @ANTARES_VY last updated on 25/Apr/17
I  do  not  understand
Idonotunderstand
Commented by mrW1 last updated on 25/Apr/17
since (α−1)^2 ≥0  hence (α−1)^2 +1≥1
since(α1)20hence(α1)2+11
Answered by ridwan balatif last updated on 25/Apr/17
x^2 −αx+α−1=0  x_1 +x_2 =α  x_1 .x_2 =α−1  let p=x_1 ^2 +x_2 ^2   p=(x_1 +x_2 )^2 −2x_1 x_2   p=(α)^2 −2(α−1)  p=α^2 −2α+2  p will minimum if (dp/dα)=0  2α−2=0  α=1  so the minimum value of  p=x_1 ^2 +x_2 ^2      =α^2 −2α+2     =1^2 −2.1+2  p=1     OR  i think this is what MrW1think  p=α^2 −2α+2  p=(α−1)^2 −1+2  p=(α−1)^2 +1  p will minimum if (α−1)^2 =0, so  p=1
x2αx+α1=0x1+x2=αx1.x2=α1letp=x12+x22p=(x1+x2)22x1x2p=(α)22(α1)p=α22α+2pwillminimumifdpdα=02α2=0α=1sotheminimumvalueofp=x12+x22=α22α+2=122.1+2p=1ORithinkthisiswhatMrW1thinkp=α22α+2p=(α1)21+2p=(α1)2+1pwillminimumif(α1)2=0,sop=1

Leave a Reply

Your email address will not be published. Required fields are marked *