Menu Close

This-y-2cos-2-x-sin2x-2sin-2-x-find-the-smallest-value-of-the-function-




Question Number 12551 by @ANTARES_VY last updated on 25/Apr/17
This  y=((2cos^2 x+sin2x)/(2sin^2 x))  find  the  smallest  value  of  the  function.
Thisy=2cos2x+sin2x2sin2xfindthesmallestvalueofthefunction.
Answered by mrW1 last updated on 25/Apr/17
y=((2cos^2 x+sin2x)/(2sin^2 x))   =((2cos^2 x+2sinxcos x)/(2sin^2 x))   =((cos^2 x+sinxcos x)/(sin^2 x))   =cot^2  x+cot x  =cot^2  x+2×(1/2)cot x+((1/2))^2 −(1/4)  =(cot x+(1/2))^2 −(1/4)≥−(1/4)  ⇒smalles value of function=−(1/4)    minimum when cot x+(1/2)=0  or tan x=−2  or x=nπ−tan^(−1) (2)
y=2cos2x+sin2x2sin2x=2cos2x+2sinxcosx2sin2x=cos2x+sinxcosxsin2x=cot2x+cotx=cot2x+2×12cotx+(12)214=(cotx+12)21414smallesvalueoffunction=14minimumwhencotx+12=0ortanx=2orx=nπtan1(2)

Leave a Reply

Your email address will not be published. Required fields are marked *