Menu Close

This-y-sin-x-2-find-the-range-of-the-function-




Question Number 12547 by @ANTARES_VY last updated on 25/Apr/17
This  y=sin(x/2)  find  the  range  of  the    function.
$$\boldsymbol{\mathrm{This}} \\ $$$$\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{sin}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\:\:\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{range}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\: \\ $$$$\boldsymbol{\mathrm{function}}. \\ $$
Answered by mrW1 last updated on 25/Apr/17
x,y∈R  −1≤y≤1
$${x},{y}\in\mathbb{R} \\ $$$$−\mathrm{1}\leqslant{y}\leqslant\mathrm{1} \\ $$
Commented by @ANTARES_VY last updated on 25/Apr/17
what is the soluton
$$\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{soluton}} \\ $$
Commented by mrW1 last updated on 25/Apr/17
what do you mean?  you wanted to know the range of function,  I gave you the answer, that is   −1≤y≤1.
$${what}\:{do}\:{you}\:{mean}? \\ $$$${you}\:{wanted}\:{to}\:{know}\:{the}\:{range}\:{of}\:{function}, \\ $$$${I}\:{gave}\:{you}\:{the}\:{answer},\:{that}\:{is} \\ $$$$\:−\mathrm{1}\leqslant{y}\leqslant\mathrm{1}. \\ $$
Commented by ajfour last updated on 26/Apr/17
sin θ=(p/h)  −h≤p≤h  so −1≤(p/h)≤1  ⇒ −1≤sin θ≤1 .
$$\mathrm{sin}\:\theta=\frac{{p}}{{h}} \\ $$$$−{h}\leqslant{p}\leqslant{h} \\ $$$${so}\:−\mathrm{1}\leqslant\frac{{p}}{{h}}\leqslant\mathrm{1} \\ $$$$\Rightarrow\:−\mathrm{1}\leqslant\mathrm{sin}\:\theta\leqslant\mathrm{1}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *