Three-point-are-drawn-on-a-straight-number-line-A-B-and-C-Consider-a-quadractic-equation-x-2-ax-b-0-a-Length-of-line-segment-AB-b-Length-of-line-segment-BC-Give-construction-steps-to-identify-a-poin Tinku Tara June 3, 2023 Algebra 0 Comments FacebookTweetPin Question Number 3588 by prakash jain last updated on 16/Dec/15 ThreepointaredrawnonastraightnumberlineA,BandC.Consideraquadracticequationx2+ax+b=0a=LengthoflinesegmentABb=LengthoflinesegmentBCGiveconstructionstepstoidentifyapointsintheplanefortherootsoftheaboveequationusingonlyruler(withoutanymarkings)andcompass.Forrealrootspointcorrespodingtorootwillbeonnumberline,forcomplexrootintheplanewhereycoordinate⊥rtonumberlineshouldgivetheimaginarycomponent.CoordinateofAare(0,0).Assumecircleofradius1canbedrawnusingcompassthisallowsforlinesofunitlength. Answered by Rasheed Soomro last updated on 19/Dec/15 ∣ATRY―−∣x=−a±a2−4b2Forrealroots:a,baregiven.alinesegmentoflengtha2canbeacheivedinlightofyouranswerofQ3607.subtractingfourtimesb.Squarerootisachieveable.subtractinga..halvethelinesegment…I,llwriteansweindetailatpresentonlyforrealx….Assuminga,b>0[a,bareonrightsidesoforigin.A=(0,0)(given)CoordinatesofBandCalongABC→(x−axis)willbe(a,0)and(a+b,0)respectively.(AssumingBisbetweenAandC)⋮Forcomplexroots:x2+ax+b=0Letx=x1+ix2(x1+ix2)2+a(x1+ix2)+b=0x12−x22+2x1x2i+ax1+ax2i+b=0;a,b∈R+x12−x22+ax1+b=0∧2x1x2+ax2=02x1x2+ax2=0⇒x2(2x1+a)=0⇒x2=0∨x1=−a2Forx2=0x12−x22+ax1+b=0⇒x12+ax1+b=0x1=−a±a2−4b2x1+x2i=−a±a2−4b2+0i=−a±a2−4b2pointsoftherootsare(−a±a2−4b2,0)weneedthelengths−a+a2−4b2and−a−a2−4b2whichareclearlyconstructible.Forx1=−a2(−a2)2−x22+a(−a2)+b=0a24−x22−a22+b=0⇒x22=a24−a22+bx2=±a2−2a2+4b4x2=±−a2+4b2x1+x2i=−a2±(−a2+4b2)iPointsare(−a2,−a2+4b2)and(−a2,−−a2+4b2)Lengthsneededare−a2and−a2+4b2whichareconstructible. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-pie-3-2pi-2-e-2-11-6pi-3-e-3-25-12pi-4-e-4-137-60pi-5-e-5-log-pi-1-log-pie-1-pie-1-Next Next post: M-dx-2cos-x-3sin-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.